Learn more

Refine search


Results (1-50 of 14714 matches)

Next   displayed columns for results
Label Dimension Base field L-polynomial $p$-rank Number fields Galois groups Isogeny factors
3.2.ag_s_abg $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )^{3}$ $0$ \(\Q(\sqrt{-1}) \) $C_2$
3.2.ae_i_am $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )( 1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.2.ae_k_aq $3$ $\F_{2}$ $( 1 + 2 x^{2} )( 1 - 2 x + 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) $C_2$, $C_2$
3.2.ac_ac_i $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )( 1 - 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \) $C_2$, $C_2$
3.2.ac_a_e $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )( 1 - 2 x^{2} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\) $C_2$, $C_2^2$
3.2.ac_c_a $3$ $\F_{2}$ $( 1 + 2 x + 2 x^{2} )( 1 - 2 x + 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$
3.2.ac_e_ai $3$ $\F_{2}$ $( 1 + 2 x^{2} )( 1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.2.ac_e_ae $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}, \sqrt{-3})\) $C_2$, $C_2^2$
3.2.ac_g_ai $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) $C_2$, $C_2$
3.2.a_ac_a $3$ $\F_{2}$ $( 1 + 2 x^{2} )( 1 - 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \) $C_2$, $C_2$
3.2.a_a_ae $3$ $\F_{2}$ $( 1 + 2 x + 2 x^{2} )( 1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.2.a_a_a $3$ $\F_{2}$ $( 1 + 2 x^{2} )( 1 - 2 x^{2} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\) $C_2$, $C_2^2$
3.2.a_a_e $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )( 1 + 2 x + 2 x^{2} + 4 x^{3} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.2.a_c_a $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$, $C_2$
3.2.a_e_a $3$ $\F_{2}$ $( 1 + 2 x^{2} )( 1 + 2 x^{2} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}, \sqrt{-3})\) $C_2$, $C_2^2$
3.2.a_g_a $3$ $\F_{2}$ $( 1 + 2 x^{2} )^{3}$ $0$ \(\Q(\sqrt{-2}) \) $C_2$
3.2.c_ac_ai $3$ $\F_{2}$ $( 1 + 2 x + 2 x^{2} )( 1 - 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \) $C_2$, $C_2$
3.2.c_a_ae $3$ $\F_{2}$ $( 1 + 2 x + 2 x^{2} )( 1 - 2 x^{2} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\) $C_2$, $C_2^2$
3.2.c_c_a $3$ $\F_{2}$ $( 1 - 2 x + 2 x^{2} )( 1 + 2 x + 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$
3.2.c_e_e $3$ $\F_{2}$ $( 1 + 2 x + 2 x^{2} )( 1 + 2 x^{2} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}, \sqrt{-3})\) $C_2$, $C_2^2$
3.2.c_e_i $3$ $\F_{2}$ $( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} + 4 x^{3} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-2}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.2.c_g_i $3$ $\F_{2}$ $( 1 + 2 x + 2 x^{2} )( 1 + 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$
3.2.e_i_m $3$ $\F_{2}$ $( 1 + 2 x + 2 x^{2} )( 1 + 2 x + 2 x^{2} + 4 x^{3} + 4 x^{4} )$ $0$ \(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.2.e_k_q $3$ $\F_{2}$ $( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) $C_2$, $C_2$
3.2.g_s_bg $3$ $\F_{2}$ $( 1 + 2 x + 2 x^{2} )^{3}$ $0$ \(\Q(\sqrt{-1}) \) $C_2$
3.3.aj_bk_add $3$ $\F_{3}$ $( 1 - 3 x + 3 x^{2} )^{3}$ $0$ \(\Q(\sqrt{-3}) \) $C_2$
3.3.ag_s_abk $3$ $\F_{3}$ $( 1 + 3 x^{2} )( 1 - 3 x + 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
3.3.ad_ad_s $3$ $\F_{3}$ $( 1 - 3 x + 3 x^{2} )( 1 - 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \) $C_2$, $C_2$
3.3.ad_a_j $3$ $\F_{3}$ $( 1 + 3 x + 3 x^{2} )( 1 - 3 x + 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
3.3.ad_d_a $3$ $\F_{3}$ $( 1 - 3 x + 3 x^{2} )( 1 + 9 x^{4} )$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(i, \sqrt{6})\) $C_2$, $C_2^2$
3.3.ad_g_aj $3$ $\F_{3}$ $( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} + 9 x^{4} )$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.3.ad_j_as $3$ $\F_{3}$ $( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
3.3.a_ad_a $3$ $\F_{3}$ $( 1 + 3 x^{2} )( 1 - 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \) $C_2$, $C_2$
3.3.a_a_aj $3$ $\F_{3}$ $1 - 9 x^{3} + 27 x^{6}$ $0$ \(\Q(\zeta_{9})\) $C_6$
3.3.a_a_a $3$ $\F_{3}$ $( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} )( 1 + 3 x + 3 x^{2} )$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$, $C_2$
3.3.a_a_j $3$ $\F_{3}$ $1 + 9 x^{3} + 27 x^{6}$ $0$ \(\Q(\zeta_{9})\) $C_6$
3.3.a_d_a $3$ $\F_{3}$ $( 1 + 3 x^{2} )( 1 + 9 x^{4} )$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(i, \sqrt{6})\) $C_2$, $C_2^2$
3.3.a_g_a $3$ $\F_{3}$ $( 1 + 3 x^{2} )( 1 + 3 x^{2} + 9 x^{4} )$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.3.a_j_a $3$ $\F_{3}$ $( 1 + 3 x^{2} )^{3}$ $0$ \(\Q(\sqrt{-3}) \) $C_2$
3.3.d_ad_as $3$ $\F_{3}$ $( 1 + 3 x + 3 x^{2} )( 1 - 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \) $C_2$, $C_2$
3.3.d_a_aj $3$ $\F_{3}$ $( 1 - 3 x + 3 x^{2} )( 1 + 3 x + 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
3.3.d_d_a $3$ $\F_{3}$ $( 1 + 3 x + 3 x^{2} )( 1 + 9 x^{4} )$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(i, \sqrt{6})\) $C_2$, $C_2^2$
3.3.d_g_j $3$ $\F_{3}$ $( 1 + 3 x + 3 x^{2} )( 1 + 3 x^{2} + 9 x^{4} )$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\) $C_2$, $C_2^2$
3.3.d_j_s $3$ $\F_{3}$ $( 1 + 3 x + 3 x^{2} )( 1 + 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
3.3.g_s_bk $3$ $\F_{3}$ $( 1 + 3 x^{2} )( 1 + 3 x + 3 x^{2} )^{2}$ $0$ \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) $C_2$, $C_2$
3.3.j_bk_dd $3$ $\F_{3}$ $( 1 + 3 x + 3 x^{2} )^{3}$ $0$ \(\Q(\sqrt{-3}) \) $C_2$
3.4.am_ci_age $3$ $\F_{2^{2}}$ $( 1 - 2 x )^{6}$ $0$ \(\Q\) Trivial
3.4.ak_bs_aei $3$ $\F_{2^{2}}$ $( 1 - 2 x )^{4}( 1 - 2 x + 4 x^{2} )$ $0$ \(\Q\), \(\Q(\sqrt{-3}) \) Trivial, $C_2$
3.4.ai_bc_acm $3$ $\F_{2^{2}}$ $( 1 - 2 x )^{4}( 1 + 4 x^{2} )$ $0$ \(\Q\), \(\Q(\sqrt{-1}) \) Trivial, $C_2$
3.4.ai_bg_adc $3$ $\F_{2^{2}}$ $( 1 - 2 x )^{2}( 1 - 2 x + 4 x^{2} )^{2}$ $0$ \(\Q\), \(\Q(\sqrt{-3}) \) Trivial, $C_2$
Next   displayed columns for results