Label |
Dimension |
Base field |
Base char. |
Simple |
Geom. simple |
Primitive |
Ordinary |
Almost ordinary |
Supersingular |
Princ. polarizable |
Jacobian |
L-polynomial |
Newton slopes |
Newton elevation |
$p$-rank |
$p$-corank |
Angle rank |
Angle corank |
$\mathbb{F}_q$ points on curve |
$\mathbb{F}_{q^k}$ points on curve |
$\mathbb{F}_q$ points on variety |
$\mathbb{F}_{q^k}$ points on variety |
Jacobians |
Hyperelliptic Jacobians |
Num. twists |
Max. twist degree |
End. degree |
Number fields |
Galois groups |
Isogeny factors |
3.2.ag_s_abg |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )^{3}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-3$ |
$[-3, 5, 21, 41, 57, 65, 81, 161, 417, 1025]$ |
$1$ |
$[1, 125, 2197, 15625, 68921, 274625, 1442897, 11390625, 111284641, 1076890625]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.2.ac 3 |
3.2.ae_i_am |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )( 1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-1$ |
$[-1, 5, 5, 17, 49, 65, 97, 257, 545, 1025]$ |
$1$ |
$[1, 65, 325, 4225, 54161, 274625, 1632737, 16769025, 142869025, 1073741825]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$12$ |
\(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.2.ac $\times$ 2.2.ac_c |
3.2.ae_k_aq |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x^{2} )( 1 - 2 x + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-1$ |
$[-1, 9, 17, 25, 49, 81, 97, 161, 449, 1089]$ |
$3$ |
$[3, 225, 1521, 5625, 55473, 342225, 1647201, 11390625, 118688193, 1144130625]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.2.ac 2 $\times$ 1.2.a |
3.2.ac_ac_i |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )( 1 - 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, -3, 13, 9, 41, 33, 113, 161, 481, 897]$ |
$1$ |
$[1, 5, 637, 2025, 39401, 156065, 1822577, 11390625, 125599201, 946609025]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \) |
$C_2$, $C_2$ |
1.2.ac $\times$ 2.2.a_ae |
3.2.ac_a_e |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 2 x^{2} )( 1 - 2 x^{2} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 1, 13, 33, 41, 97, 113, 257, 481, 961]$ |
$3$ |
$[3, 45, 1053, 11025, 40713, 426465, 1837041, 16769025, 126584289, 1010700225]$ |
$1$ |
$0$ |
$25$ |
$24$ |
$24$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2$, $C_2^2$ |
1.2.ac $\times$ 2.2.a_ac |
3.2.ac_c_a |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )( 1 - 2 x + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 5, 13, 41, 41, 65, 113, 161, 481, 1025]$ |
$5$ |
$[5, 125, 845, 15625, 42025, 274625, 1851505, 11390625, 126091745, 1076890625]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.2.ac 2 $\times$ 1.2.c |
3.2.ac_e_ai |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x^{2} )( 1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 9, 1, 1, 41, 81, 113, 257, 577, 1089]$ |
$3$ |
$[3, 117, 225, 1521, 43593, 342225, 1863921, 16769025, 152373825, 1140785217]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$24$ |
\(\Q(\sqrt{-2}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.2.a $\times$ 2.2.ac_c |
3.2.ac_e_ae |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 9, 13, 33, 41, 33, 113, 257, 481, 1089]$ |
$7$ |
$[7, 245, 637, 11025, 43337, 156065, 1865969, 16769025, 125599201, 1145180225]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$24$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2$, $C_2^2$ |
1.2.ac $\times$ 2.2.a_c |
3.2.ac_g_ai |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 13, 13, 9, 41, 97, 113, 161, 481, 1153]$ |
$9$ |
$[9, 405, 1053, 2025, 44649, 426465, 1880433, 11390625, 126584289, 1215569025]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \) |
$C_2$, $C_2$ |
1.2.ac $\times$ 1.2.a 2 |
3.2.a_ac_a |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x^{2} )( 1 - 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$3$ |
$[3, 1, 9, -7, 33, 49, 129, 161, 513, 961]$ |
$3$ |
$[3, 9, 441, 729, 31713, 194481, 2080641, 11390625, 133955073, 1005714369]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$4$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \) |
$C_2$, $C_2$ |
1.2.a $\times$ 2.2.a_ae |
3.2.a_a_ae |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )( 1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$3$ |
$[3, 5, -3, 17, 33, 65, 129, 257, 609, 1025]$ |
$5$ |
$[5, 65, 125, 4225, 33025, 274625, 2095105, 16769025, 161878625, 1073741825]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$12$ |
\(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.2.c $\times$ 2.2.ac_c |
3.2.a_a_a |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 2 x^{2} )( 1 - 2 x^{2} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$3$ |
$[3, 5, 9, 17, 33, 113, 129, 257, 513, 1025]$ |
$9$ |
$[9, 81, 729, 3969, 32769, 531441, 2097153, 16769025, 135005697, 1073807361]$ |
$2$ |
$0$ |
$25$ |
$24$ |
$6$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2$, $C_2^2$ |
1.2.a $\times$ 2.2.a_ac |
3.2.a_a_e |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x + 2 x^{2} + 4 x^{3} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$3$ |
$[3, 5, 21, 17, 33, 65, 129, 257, 417, 1025]$ |
$13$ |
$[13, 65, 2197, 4225, 32513, 274625, 2099201, 16769025, 111284641, 1073741825]$ |
$1$ |
$0$ |
$25$ |
$24$ |
$12$ |
\(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.2.ac $\times$ 2.2.c_c |
3.2.a_c_a |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$3$ |
$[3, 9, 9, 25, 33, 81, 129, 161, 513, 1089]$ |
$15$ |
$[15, 225, 585, 5625, 33825, 342225, 2113665, 11390625, 134480385, 1144130625]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$, $C_2$ |
1.2.ac $\times$ 1.2.a $\times$ 1.2.c |
3.2.a_e_a |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 2 x^{2} )( 1 + 2 x^{2} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$3$ |
$[3, 13, 9, 17, 33, 49, 129, 257, 513, 1153]$ |
$21$ |
$[21, 441, 441, 3969, 34881, 194481, 2130177, 16769025, 133955073, 1216684161]$ |
$1$ |
$0$ |
$25$ |
$24$ |
$12$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2$, $C_2^2$ |
1.2.a $\times$ 2.2.a_c |
3.2.a_g_a |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x^{2} )^{3}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$3$ |
$[3, 17, 9, -7, 33, 113, 129, 161, 513, 1217]$ |
$27$ |
$[27, 729, 729, 729, 35937, 531441, 2146689, 11390625, 135005697, 1291467969]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$2$ |
\(\Q(\sqrt{-2}) \) |
$C_2$ |
1.2.a 3 |
3.2.c_ac_ai |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )( 1 - 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$5$ |
$[5, -3, 5, 9, 25, 33, 145, 161, 545, 897]$ |
$5$ |
$[5, 5, 245, 2025, 24025, 156065, 2338705, 11390625, 142310945, 946609025]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$8$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}) \) |
$C_2$, $C_2$ |
1.2.c $\times$ 2.2.a_ae |
3.2.c_a_ae |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )( 1 - 2 x^{2} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$5$ |
$[5, 1, 5, 33, 25, 97, 145, 257, 545, 961]$ |
$15$ |
$[15, 45, 405, 11025, 24825, 426465, 2357265, 16769025, 143427105, 1010700225]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$24$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}, \sqrt{-3})\) |
$C_2$, $C_2^2$ |
1.2.c $\times$ 2.2.a_ac |
3.2.c_c_a |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x + 2 x^{2} )( 1 + 2 x + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$5$ |
$[5, 5, 5, 41, 25, 65, 145, 161, 545, 1025]$ |
$25$ |
$[25, 125, 325, 15625, 25625, 274625, 2375825, 11390625, 142869025, 1076890625]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.2.ac $\times$ 1.2.c 2 |
3.2.c_e_e |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 2 x + 2 x^{2} )( 1 + 2 x^{2} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$5$ |
$[5, 9, 5, 33, 25, 33, 145, 257, 545, 1089]$ |
$35$ |
$[35, 245, 245, 11025, 26425, 156065, 2394385, 16769025, 142310945, 1145180225]$ |
$1$ |
$0$ |
$25$ |
$24$ |
$24$ |
\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{2}, \sqrt{-3})\) |
$C_2$, $C_2^2$ |
1.2.c $\times$ 2.2.a_c |
3.2.c_e_i |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} + 4 x^{3} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$5$ |
$[5, 9, 17, 1, 25, 81, 145, 257, 449, 1089]$ |
$39$ |
$[39, 117, 1521, 1521, 26169, 342225, 2396433, 16769025, 118688193, 1140785217]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$24$ |
\(\Q(\sqrt{-2}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.2.a $\times$ 2.2.c_c |
3.2.c_g_i |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )( 1 + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$5$ |
$[5, 13, 5, 9, 25, 97, 145, 161, 545, 1153]$ |
$45$ |
$[45, 405, 405, 2025, 27225, 426465, 2412945, 11390625, 143427105, 1215569025]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$8$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.2.a 2 $\times$ 1.2.c |
3.2.e_i_m |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )( 1 + 2 x + 2 x^{2} + 4 x^{3} + 4 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$7$ |
$[7, 5, 13, 17, 17, 65, 161, 257, 481, 1025]$ |
$65$ |
$[65, 65, 845, 4225, 19825, 274625, 2693665, 16769025, 126091745, 1073741825]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$12$ |
\(\Q(\sqrt{-1}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.2.c $\times$ 2.2.c_c |
3.2.e_k_q |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x^{2} )( 1 + 2 x + 2 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$7$ |
$[7, 9, 1, 25, 17, 81, 161, 161, 577, 1089]$ |
$75$ |
$[75, 225, 225, 5625, 20625, 342225, 2712225, 11390625, 152373825, 1144130625]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$8$ |
\(\Q(\sqrt{-2}) \), \(\Q(\sqrt{-1}) \) |
$C_2$, $C_2$ |
1.2.a $\times$ 1.2.c 2 |
3.2.g_s_bg |
$3$ |
$\F_{2}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 2 x + 2 x^{2} )^{3}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$9$ |
$[9, 5, -3, 41, 9, 65, 177, 161, 609, 1025]$ |
$125$ |
$[125, 125, 125, 15625, 15625, 274625, 3048625, 11390625, 161878625, 1076890625]$ |
$0$ |
$0$ |
$25$ |
$24$ |
$4$ |
\(\Q(\sqrt{-1}) \) |
$C_2$ |
1.2.c 3 |
3.3.aj_bk_add |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x + 3 x^{2} )^{3}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-5$ |
$[-5, 1, 28, 109, 325, 892, 2431, 6805, 19684, 58321]$ |
$1$ |
$[1, 343, 21952, 753571, 19902511, 481890304, 11681631109, 293151929707, 7626759805504, 203370086883943]$ |
$0$ |
$0$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.ad 3 |
3.3.ag_s_abk |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x^{2} )( 1 - 3 x + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-2$ |
$[-2, 10, 28, 82, 298, 892, 2350, 6562, 19684, 59050]$ |
$4$ |
$[4, 784, 21952, 529984, 17919604, 481890304, 11264613868, 282428473600, 7626759805504, 205891160792464]$ |
$0$ |
$0$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.ad 2 $\times$ 1.3.a |
3.3.ad_ad_s |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x + 3 x^{2} )( 1 - 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, -5, 28, 55, 271, 676, 2269, 6319, 19684, 57835]$ |
$4$ |
$[4, 112, 18928, 372736, 15870844, 358269184, 10842634324, 272097280000, 7625210044816, 201692843439472]$ |
$0$ |
$0$ |
$21$ |
$36$ |
$12$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \) |
$C_2$, $C_2$ |
1.3.ad $\times$ 2.3.a_ag |
3.3.ad_a_j |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x + 3 x^{2} )( 1 - 3 x + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 1, 28, 109, 271, 892, 2269, 6805, 19684, 58321]$ |
$7$ |
$[7, 343, 21952, 753571, 15936697, 481890304, 10847596627, 293151929707, 7626759805504, 203370086883943]$ |
$2$ |
$0$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.ad 2 $\times$ 1.3.d |
3.3.ad_d_a |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 3 x + 3 x^{2} )( 1 + 9 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 7, 28, 127, 271, 784, 2269, 6319, 19684, 58807]$ |
$10$ |
$[10, 700, 20440, 910000, 16002550, 417793600, 10852558930, 272097280000, 7625984925160, 205054275317500]$ |
$1$ |
$0$ |
$21$ |
$72$ |
$24$ |
\(\Q(\sqrt{-3}) \), \(\Q(i, \sqrt{6})\) |
$C_2$, $C_2^2$ |
1.3.ad $\times$ 2.3.a_a |
3.3.ad_g_aj |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} + 9 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 13, 28, 109, 271, 676, 2269, 6805, 19684, 59293]$ |
$13$ |
$[13, 1183, 18928, 753571, 16068403, 358269184, 10857521233, 293151929707, 7625210044816, 206745408740143]$ |
$3$ |
$0$ |
$21$ |
$36$ |
$12$ |
\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.3.ad $\times$ 2.3.a_d |
3.3.ad_j_as |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$1$ |
$[1, 19, 28, 55, 271, 892, 2269, 6319, 19684, 59779]$ |
$16$ |
$[16, 1792, 21952, 372736, 16134256, 481890304, 10862483536, 272097280000, 7626759805504, 208443487151872]$ |
$1$ |
$0$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.ad $\times$ 1.3.a 2 |
3.3.a_ad_a |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x^{2} )( 1 - 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$4$ |
$[4, 4, 28, 28, 244, 676, 2188, 6076, 19684, 58564]$ |
$16$ |
$[16, 256, 18928, 262144, 14289616, 358269184, 10455568048, 262144000000, 7625210044816, 204193125427456]$ |
$1$ |
$0$ |
$21$ |
$36$ |
$4$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \) |
$C_2$, $C_2$ |
1.3.a $\times$ 2.3.a_ag |
3.3.a_a_aj |
$3$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
|
$1 - 9 x^{3} + 27 x^{6}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$4$ |
$[4, 10, 1, 82, 244, 649, 2188, 6562, 19684, 59050]$ |
$19$ |
$[19, 703, 6859, 532171, 14355469, 347428927, 10460530351, 282430067923, 7626759805504, 205891117745743]$ |
$0$ |
$0$ |
$21$ |
$72$ |
$18$ |
\(\Q(\zeta_{9})\) |
$C_6$ |
simple |
3.3.a_a_a |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 - 3 x + 3 x^{2} )( 1 + 3 x^{2} )( 1 + 3 x + 3 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$4$ |
$[4, 10, 28, 82, 244, 892, 2188, 6562, 19684, 59050]$ |
$28$ |
$[28, 784, 21952, 529984, 14348908, 481890304, 10460353204, 282428473600, 7626759805504, 205891160792464]$ |
$9$ |
$4$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$, $C_2$ |
1.3.ad $\times$ 1.3.a $\times$ 1.3.d |
3.3.a_a_j |
$3$ |
$\F_{3}$ |
$3$ |
✓ |
|
✓ |
|
|
✓ |
✓ |
✓ |
$1 + 9 x^{3} + 27 x^{6}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$4$ |
$[4, 10, 55, 82, 244, 649, 2188, 6562, 19684, 59050]$ |
$37$ |
$[37, 703, 50653, 532171, 14342347, 347428927, 10460176057, 282430067923, 7626759805504, 205891117745743]$ |
$2$ |
$0$ |
$21$ |
$72$ |
$18$ |
\(\Q(\zeta_{9})\) |
$C_6$ |
simple |
3.3.a_d_a |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x^{2} )( 1 + 9 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$4$ |
$[4, 16, 28, 100, 244, 784, 2188, 6076, 19684, 59536]$ |
$40$ |
$[40, 1600, 20440, 640000, 14408200, 417793600, 10465138360, 262144000000, 7625984925160, 207596227240000]$ |
$11$ |
$6$ |
$21$ |
$72$ |
$8$ |
\(\Q(\sqrt{-3}) \), \(\Q(i, \sqrt{6})\) |
$C_2$, $C_2^2$ |
1.3.a $\times$ 2.3.a_a |
3.3.a_g_a |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x^{2} )( 1 + 3 x^{2} + 9 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$4$ |
$[4, 22, 28, 82, 244, 676, 2188, 6562, 19684, 60022]$ |
$52$ |
$[52, 2704, 18928, 529984, 14467492, 358269184, 10469923516, 282428473600, 7625210044816, 209308324770064]$ |
$0$ |
$0$ |
$21$ |
$36$ |
$12$ |
\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.3.a $\times$ 2.3.a_d |
3.3.a_j_a |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x^{2} )^{3}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$4$ |
$[4, 28, 28, 28, 244, 892, 2188, 6076, 19684, 60508]$ |
$64$ |
$[64, 4096, 21952, 262144, 14526784, 481890304, 10474708672, 262144000000, 7626759805504, 211027453382656]$ |
$1$ |
$0$ |
$21$ |
$24$ |
$2$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.a 3 |
3.3.d_ad_as |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x + 3 x^{2} )( 1 - 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$7$ |
$[7, -5, 28, 55, 217, 676, 2107, 6319, 19684, 57835]$ |
$28$ |
$[28, 112, 18928, 372736, 12708388, 358269184, 10068501772, 272097280000, 7625210044816, 201692843439472]$ |
$0$ |
$0$ |
$21$ |
$36$ |
$12$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{3}) \) |
$C_2$, $C_2$ |
1.3.d $\times$ 2.3.a_ag |
3.3.d_a_aj |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 3 x + 3 x^{2} )( 1 + 3 x + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$7$ |
$[7, 1, 28, 109, 217, 892, 2107, 6805, 19684, 58321]$ |
$49$ |
$[49, 343, 21952, 753571, 12761119, 481890304, 10073109781, 293151929707, 7626759805504, 203370086883943]$ |
$0$ |
$0$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.ad $\times$ 1.3.d 2 |
3.3.d_d_a |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x + 3 x^{2} )( 1 + 9 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$7$ |
$[7, 7, 28, 127, 217, 784, 2107, 6319, 19684, 58807]$ |
$70$ |
$[70, 700, 20440, 910000, 12813850, 417793600, 10077717790, 272097280000, 7625984925160, 205054275317500]$ |
$0$ |
$0$ |
$21$ |
$72$ |
$24$ |
\(\Q(\sqrt{-3}) \), \(\Q(i, \sqrt{6})\) |
$C_2$, $C_2^2$ |
1.3.d $\times$ 2.3.a_a |
3.3.d_g_j |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x + 3 x^{2} )( 1 + 3 x^{2} + 9 x^{4} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$7$ |
$[7, 13, 28, 109, 217, 676, 2107, 6805, 19684, 59293]$ |
$91$ |
$[91, 1183, 18928, 753571, 12866581, 358269184, 10082325799, 293151929707, 7625210044816, 206745408740143]$ |
$2$ |
$0$ |
$21$ |
$36$ |
$12$ |
\(\Q(\sqrt{-3}) \), \(\Q(\zeta_{12})\) |
$C_2$, $C_2^2$ |
1.3.d $\times$ 2.3.a_d |
3.3.d_j_s |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x + 3 x^{2} )( 1 + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$7$ |
$[7, 19, 28, 55, 217, 892, 2107, 6319, 19684, 59779]$ |
$112$ |
$[112, 1792, 21952, 372736, 12919312, 481890304, 10086933808, 272097280000, 7626759805504, 208443487151872]$ |
$1$ |
$0$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.a 2 $\times$ 1.3.d |
3.3.g_s_bk |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
✓ |
$( 1 + 3 x^{2} )( 1 + 3 x + 3 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$10$ |
$[10, 10, 28, 82, 190, 892, 2026, 6562, 19684, 59050]$ |
$196$ |
$[196, 784, 21952, 529984, 11489716, 481890304, 9713514412, 282428473600, 7626759805504, 205891160792464]$ |
$1$ |
$0$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-3}) \) |
$C_2$, $C_2$ |
1.3.a $\times$ 1.3.d 2 |
3.3.j_bk_dd |
$3$ |
$\F_{3}$ |
$3$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 + 3 x + 3 x^{2} )^{3}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$13$ |
$[13, 1, 28, 109, 163, 892, 1945, 6805, 19684, 58321]$ |
$343$ |
$[343, 343, 21952, 753571, 10218313, 481890304, 9353919043, 293151929707, 7626759805504, 203370086883943]$ |
$0$ |
$0$ |
$21$ |
$24$ |
$6$ |
\(\Q(\sqrt{-3}) \) |
$C_2$ |
1.3.d 3 |
3.4.am_ci_age |
$3$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{6}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-7$ |
$[-7, -7, 17, 161, 833, 3713, 15617, 64001, 259073, 1042433]$ |
$1$ |
$[1, 729, 117649, 11390625, 887503681, 62523502209, 4195872914689, 274941996890625, 17804320388674561, 1146182576381093889]$ |
$0$ |
$0$ |
$57$ |
$30$ |
$1$ |
\(\Q\) |
Trivial |
1.4.ae 3 |
3.4.ak_bs_aei |
$3$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{4}( 1 - 2 x + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-5$ |
$[-5, 5, 49, 209, 865, 3713, 15745, 64769, 261121, 1045505]$ |
$3$ |
$[3, 1701, 194481, 13820625, 917056353, 62523502209, 4229171428737, 278189293370625, 17943961582435329, 1149547101276861441]$ |
$0$ |
$0$ |
$57$ |
$60$ |
$6$ |
\(\Q\), \(\Q(\sqrt{-3}) \) |
Trivial, $C_2$ |
1.4.ae 2 $\times$ 1.4.ac |
3.4.ai_bc_acm |
$3$ |
$\F_{2^{2}}$ |
$2$ |
|
|
|
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{4}( 1 + 4 x^{2} )$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-3$ |
$[-3, 9, 33, 161, 897, 3969, 15873, 64001, 260097, 1046529]$ |
$5$ |
$[5, 2025, 156065, 11390625, 946609025, 66556260225, 4262469942785, 274941996890625, 17874140985554945, 1150668609575450625]$ |
$0$ |
$0$ |
$57$ |
$60$ |
$4$ |
\(\Q\), \(\Q(\sqrt{-1}) \) |
Trivial, $C_2$ |
1.4.ae 2 $\times$ 1.4.a |
3.4.ai_bg_adc |
$3$ |
$\F_{2^{2}}$ |
$2$ |
|
|
✓ |
|
|
✓ |
✓ |
|
$( 1 - 2 x )^{2}( 1 - 2 x + 4 x^{2} )^{2}$ |
$[\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2}]$ |
$4$ |
$0$ |
$3$ |
$0$ |
$3$ |
$-3$ |
$[-3, 17, 81, 257, 897, 3713, 15873, 65537, 263169, 1048577]$ |
$9$ |
$[9, 3969, 321489, 16769025, 947593089, 62523502209, 4262734200321, 281474943156225, 18084697997050881, 1152921502459363329]$ |
$0$ |
$0$ |
$57$ |
$60$ |
$6$ |
\(\Q\), \(\Q(\sqrt{-3}) \) |
Trivial, $C_2$ |
1.4.ae $\times$ 1.4.ac 2 |