Invariants
| Base field: | $\F_{2}$ |
| Dimension: | $6$ |
| L-polynomial: | $( 1 - x + 2 x^{2} )^{2}( 1 - 2 x + 2 x^{2} )^{4}$ |
| Frobenius angles: | $\pm0.25$, $\pm0.25$, $\pm0.25$, $\pm0.25$, $\pm0.384973271919$, $\pm0.384973271919$ |
| Angle rank: | $1$ (numerical) |
This isogeny class is not simple.
Newton polygon
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1, 1]$ |
Point counts
This isogeny class is principally polarizable, but does not contain a Jacobian.
Point counts of the abelian variety
| $r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $A(\F_{q^r})$ | 4 | 40000 | 5597956 | 100000000 | 1367668324 | 55979560000 | 3287686987204 | 212576400000000 | 14362823545620004 | 1034299170025000000 |
Point counts of the (virtual) curve
| $r$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| $C(\F_{q^r})$ | -7 | 11 | 35 | 47 | 43 | 47 | 91 | 191 | 395 | 911 |
Decomposition and endomorphism algebra
Endomorphism algebra over $\F_{2}$The isogeny class factors as 1.2.ac 4 $\times$ 1.2.ab 2 and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
|
The base change of $A$ to $\F_{2^{4}}$ is 1.16.ab 2 $\times$ 1.16.i 4 . The endomorphism algebra for each factor is:
|
Remainder of endomorphism lattice by field
- Endomorphism algebra over $\F_{2^{2}}$
The base change of $A$ to $\F_{2^{2}}$ is 1.4.a 4 $\times$ 1.4.d 2 . The endomorphism algebra for each factor is: - 1.4.a 4 : $\mathrm{M}_{4}($\(\Q(\sqrt{-1}) \)$)$
- 1.4.d 2 : $\mathrm{M}_{2}($\(\Q(\sqrt{-7}) \)$)$
Base change
This is a primitive isogeny class.