# Properties

 Label 6.2.ag_r_abd_bg_ay_u Base field $\F_{2}$ Dimension $6$ $p$-rank $3$ Ordinary no Supersingular no Simple no Geometrically simple no Primitive yes Principally polarizable yes Contains a Jacobian no

## Invariants

 Base field: $\F_{2}$ Dimension: $6$ L-polynomial: $( 1 - 2 x + 2 x^{2} )( 1 - 2 x^{2} + 4 x^{4} )( 1 - 4 x + 9 x^{2} - 15 x^{3} + 18 x^{4} - 16 x^{5} + 8 x^{6} )$ $1 - 6x + 17x^{2} - 29x^{3} + 32x^{4} - 24x^{5} + 20x^{6} - 48x^{7} + 128x^{8} - 232x^{9} + 272x^{10} - 192x^{11} + 64x^{12}$ Frobenius angles: $\pm0.0435981566527$, $\pm0.166666666667$, $\pm0.250000000000$, $\pm0.329312442367$, $\pm0.527830414776$, $\pm0.833333333333$ Angle rank: $1$ (numerical)

This isogeny class is not simple.

## Newton polygon

 $p$-rank: $3$ Slopes: $[0, 0, 0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1, 1, 1]$

## Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $3$ $3195$ $443313$ $22700475$ $1043107773$

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-3$ $3$ $12$ $23$ $32$ $84$ $74$ $231$ $543$ $1028$

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2}$
 The isogeny class factors as 1.2.ac $\times$ 2.2.a_ac $\times$ 3.2.ae_j_ap and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{2}$
 The base change of $A$ to $\F_{2^{168}}$ is 1.374144419156711147060143317175368453031918731001856.abidcukshtnepxypydvc 3 $\times$ 1.374144419156711147060143317175368453031918731001856.rwsuotmkbtwngpmnyl 3 . The endomorphism algebra for each factor is: 1.374144419156711147060143317175368453031918731001856.abidcukshtnepxypydvc 3 : $\mathrm{M}_{3}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 1.374144419156711147060143317175368453031918731001856.rwsuotmkbtwngpmnyl 3 : $\mathrm{M}_{3}($$$\Q(\sqrt{-7})$$$)$
All geometric endomorphisms are defined over $\F_{2^{168}}$.
Remainder of endomorphism lattice by field
• Endomorphism algebra over $\F_{2^{2}}$  The base change of $A$ to $\F_{2^{2}}$ is 1.4.ac 2 $\times$ 1.4.a $\times$ 3.4.c_ad_an. The endomorphism algebra for each factor is: 1.4.ac 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-3})$$$)$ 1.4.a : $$\Q(\sqrt{-1})$$. 3.4.c_ad_an : $$\Q(\zeta_{7})$$.
• Endomorphism algebra over $\F_{2^{3}}$  The base change of $A$ to $\F_{2^{3}}$ is 1.8.a 2 $\times$ 1.8.e $\times$ 3.8.ab_ag_bb. The endomorphism algebra for each factor is: 1.8.a 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-2})$$$)$ 1.8.e : $$\Q(\sqrt{-1})$$. 3.8.ab_ag_bb : $$\Q(\zeta_{7})$$.
• Endomorphism algebra over $\F_{2^{4}}$  The base change of $A$ to $\F_{2^{4}}$ is 1.16.e 2 $\times$ 1.16.i $\times$ 3.16.ak_bl_adt. The endomorphism algebra for each factor is: 1.16.e 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-3})$$$)$ 1.16.i : the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 3.16.ak_bl_adt : $$\Q(\zeta_{7})$$.
• Endomorphism algebra over $\F_{2^{6}}$  The base change of $A$ to $\F_{2^{6}}$ is 1.64.a $\times$ 1.64.q 2 $\times$ 3.64.an_ag_bcp. The endomorphism algebra for each factor is: 1.64.a : $$\Q(\sqrt{-1})$$. 1.64.q 2 : $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 3.64.an_ag_bcp : $$\Q(\zeta_{7})$$.
• Endomorphism algebra over $\F_{2^{7}}$  The base change of $A$ to $\F_{2^{7}}$ is 1.128.aq $\times$ 1.128.an 3 $\times$ 2.128.a_aey. The endomorphism algebra for each factor is: 1.128.aq : $$\Q(\sqrt{-1})$$. 1.128.an 3 : $\mathrm{M}_{3}($$$\Q(\sqrt{-7})$$$)$ 2.128.a_aey : $$\Q(\sqrt{-2}, \sqrt{-3})$$.
• Endomorphism algebra over $\F_{2^{8}}$  The base change of $A$ to $\F_{2^{8}}$ is 1.256.abg $\times$ 1.256.q 2 $\times$ 3.256.aba_xp_amtd. The endomorphism algebra for each factor is: 1.256.abg : the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 1.256.q 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-3})$$$)$ 3.256.aba_xp_amtd : $$\Q(\zeta_{7})$$.
• Endomorphism algebra over $\F_{2^{12}}$  The base change of $A$ to $\F_{2^{12}}$ is 1.4096.aey 2 $\times$ 1.4096.ey $\times$ 3.4096.agz_bbmw_adccgn. The endomorphism algebra for each factor is: 1.4096.aey 2 : $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 1.4096.ey : the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 3.4096.agz_bbmw_adccgn : $$\Q(\zeta_{7})$$.
• Endomorphism algebra over $\F_{2^{14}}$  The base change of $A$ to $\F_{2^{14}}$ is 1.16384.aey 2 $\times$ 1.16384.a $\times$ 1.16384.dj 3 . The endomorphism algebra for each factor is: 1.16384.aey 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-3})$$$)$ 1.16384.a : $$\Q(\sqrt{-1})$$. 1.16384.dj 3 : $\mathrm{M}_{3}($$$\Q(\sqrt{-7})$$$)$
• Endomorphism algebra over $\F_{2^{21}}$  The base change of $A$ to $\F_{2^{21}}$ is 1.2097152.a 2 $\times$ 1.2097152.dau $\times$ 1.2097152.edn 3 . The endomorphism algebra for each factor is: 1.2097152.a 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-2})$$$)$ 1.2097152.dau : $$\Q(\sqrt{-1})$$. 1.2097152.edn 3 : $\mathrm{M}_{3}($$$\Q(\sqrt{-7})$$$)$
• Endomorphism algebra over $\F_{2^{24}}$  The base change of $A$ to $\F_{2^{24}}$ is 1.16777216.amdc 3 $\times$ 3.16777216.gnr_azynys_aocxfgarh. The endomorphism algebra for each factor is: 1.16777216.amdc 3 : $\mathrm{M}_{3}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 3.16777216.gnr_azynys_aocxfgarh : $$\Q(\zeta_{7})$$.
• Endomorphism algebra over $\F_{2^{28}}$  The base change of $A$ to $\F_{2^{28}}$ is 1.268435456.yge 2 $\times$ 1.268435456.blhf 3 $\times$ 1.268435456.bwmi. The endomorphism algebra for each factor is: 1.268435456.yge 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-3})$$$)$ 1.268435456.blhf 3 : $\mathrm{M}_{3}($$$\Q(\sqrt{-7})$$$)$ 1.268435456.bwmi : the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$.
• Endomorphism algebra over $\F_{2^{42}}$  The base change of $A$ to $\F_{2^{42}}$ is 1.4398046511104.ahxvrd 3 $\times$ 1.4398046511104.a $\times$ 1.4398046511104.jeqpk 2 . The endomorphism algebra for each factor is: 1.4398046511104.ahxvrd 3 : $\mathrm{M}_{3}($$$\Q(\sqrt{-7})$$$)$ 1.4398046511104.a : $$\Q(\sqrt{-1})$$. 1.4398046511104.jeqpk 2 : $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$.
• Endomorphism algebra over $\F_{2^{56}}$  The base change of $A$ to $\F_{2^{56}}$ is 1.72057594037927936.abtevrtg $\times$ 1.72057594037927936.aigsnzt 3 $\times$ 1.72057594037927936.wpkvwq 2 . The endomorphism algebra for each factor is: 1.72057594037927936.abtevrtg : the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 1.72057594037927936.aigsnzt 3 : $\mathrm{M}_{3}($$$\Q(\sqrt{-7})$$$)$ 1.72057594037927936.wpkvwq 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-3})$$$)$
• Endomorphism algebra over $\F_{2^{84}}$  The base change of $A$ to $\F_{2^{84}}$ is 1.19342813113834066795298816.abqdecdesiy 2 $\times$ 1.19342813113834066795298816.auojdvfkpl 3 $\times$ 1.19342813113834066795298816.bqdecdesiy. The endomorphism algebra for each factor is: 1.19342813113834066795298816.abqdecdesiy 2 : $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$. 1.19342813113834066795298816.auojdvfkpl 3 : $\mathrm{M}_{3}($$$\Q(\sqrt{-7})$$$)$ 1.19342813113834066795298816.bqdecdesiy : the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$.

## Base change

This is a primitive isogeny class.

## Twists

Below are some of the twists of this isogeny class.
TwistExtension degreeCommon base change
6.2.ac_b_ab_e_ai_m$2$(not in LMFDB)
6.2.c_b_b_e_i_m$2$(not in LMFDB)
6.2.g_r_bd_bg_y_u$2$(not in LMFDB)
6.2.ag_x_acn_fq_akk_qa$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension degreeCommon base change
6.2.ac_b_ab_e_ai_m$2$(not in LMFDB)
6.2.c_b_b_e_i_m$2$(not in LMFDB)
6.2.g_r_bd_bg_y_u$2$(not in LMFDB)
6.2.ag_x_acn_fq_akk_qa$3$(not in LMFDB)
6.2.ag_v_acb_ee_ahg_ky$4$(not in LMFDB)
6.2.ac_f_aj_q_abc_bk$4$(not in LMFDB)
6.2.c_f_j_q_bc_bk$4$(not in LMFDB)
6.2.g_v_cb_ee_hg_ky$4$(not in LMFDB)
6.2.ac_h_an_w_abm_bw$6$(not in LMFDB)
6.2.c_h_n_w_bm_bw$6$(not in LMFDB)
6.2.g_x_cn_fq_kk_qa$6$(not in LMFDB)
6.2.b_ae_ab_s_e_abk$7$(not in LMFDB)
6.2.b_d_ab_e_e_u$7$(not in LMFDB)
6.2.ai_bh_adr_ig_apg_xo$8$(not in LMFDB)
6.2.ag_v_acf_eu_aiq_ng$8$(not in LMFDB)
6.2.ae_j_at_bi_aca_cy$8$(not in LMFDB)
6.2.ae_j_ap_s_aq_q$8$(not in LMFDB)
6.2.ae_j_al_c_u_abs$8$(not in LMFDB)
6.2.ae_n_abf_ck_aee_ge$8$(not in LMFDB)
6.2.ac_f_af_a_i_ay$8$(not in LMFDB)
6.2.a_b_ab_ac_e_ae$8$(not in LMFDB)
6.2.a_b_b_ac_ae_ae$8$(not in LMFDB)
6.2.c_f_f_a_ai_ay$8$(not in LMFDB)
6.2.e_j_l_c_au_abs$8$(not in LMFDB)
6.2.e_j_p_s_q_q$8$(not in LMFDB)
6.2.e_j_t_bi_ca_cy$8$(not in LMFDB)
6.2.e_n_bf_ck_ee_ge$8$(not in LMFDB)
6.2.g_v_cf_eu_iq_ng$8$(not in LMFDB)
6.2.i_bh_dr_ig_pg_xo$8$(not in LMFDB)
6.2.ag_p_ar_ag_cg_aei$12$(not in LMFDB)
6.2.ac_ab_d_ac_c_a$12$(not in LMFDB)
6.2.c_ab_ad_ac_ac_a$12$(not in LMFDB)
6.2.g_p_r_ag_acg_aei$12$(not in LMFDB)
6.2.af_i_b_ak_au_cq$14$(not in LMFDB)
6.2.af_p_abb_bg_au_m$14$(not in LMFDB)
6.2.ad_h_aj_m_am_u$14$(not in LMFDB)
6.2.ab_ae_b_s_ae_abk$14$(not in LMFDB)
6.2.ab_d_ad_i_ae_m$14$(not in LMFDB)
6.2.ab_d_b_e_ae_u$14$(not in LMFDB)
6.2.b_d_d_i_e_m$14$(not in LMFDB)
6.2.d_h_j_m_m_u$14$(not in LMFDB)
6.2.f_i_ab_ak_u_cq$14$(not in LMFDB)
6.2.f_p_bb_bg_u_m$14$(not in LMFDB)
6.2.ac_a_ab_k_ai_ae$21$(not in LMFDB)
6.2.ac_g_an_w_abm_ce$21$(not in LMFDB)
6.2.b_c_f_g_k_y$21$(not in LMFDB)
6.2.b_j_f_bi_k_dc$21$(not in LMFDB)
6.2.ak_bz_agr_qs_abgs_bzk$24$(not in LMFDB)
6.2.ai_bj_aed_js_ask_bcq$24$(not in LMFDB)
6.2.ag_t_abp_cs_aec_fw$24$(not in LMFDB)
6.2.ae_h_ah_ae_be_ace$24$(not in LMFDB)
6.2.ae_l_ax_bo_ack_dk$24$(not in LMFDB)
6.2.ae_p_abn_dg_afy_iy$24$(not in LMFDB)
6.2.ac_d_af_k_as_y$24$(not in LMFDB)
6.2.ac_d_b_ac_k_ai$24$(not in LMFDB)
6.2.a_d_ad_e_ao_i$24$(not in LMFDB)
6.2.a_d_d_e_o_i$24$(not in LMFDB)
6.2.c_d_ab_ac_ak_ai$24$(not in LMFDB)
6.2.c_d_f_k_s_y$24$(not in LMFDB)
6.2.e_h_h_ae_abe_ace$24$(not in LMFDB)
6.2.e_l_x_bo_ck_dk$24$(not in LMFDB)
6.2.e_p_bn_dg_fy_iy$24$(not in LMFDB)
6.2.g_t_bp_cs_ec_fw$24$(not in LMFDB)
6.2.g_x_cn_fq_kk_qa$24$(not in LMFDB)
6.2.i_bj_ed_js_sk_bcq$24$(not in LMFDB)
6.2.k_bz_gr_qs_bgs_bzk$24$(not in LMFDB)
6.2.af_m_at_be_ace_do$28$(not in LMFDB)
6.2.af_t_abv_dw_agm_ka$28$(not in LMFDB)
6.2.ad_b_j_am_am_bs$28$(not in LMFDB)
6.2.ad_f_ad_a_a_e$28$(not in LMFDB)
6.2.ad_l_av_bw_acu_eu$28$(not in LMFDB)
6.2.ab_ad_d_i_ae_am$28$(not in LMFDB)
6.2.ab_a_ad_k_ai_e$28$(not in LMFDB)
6.2.ab_b_ab_e_a_ae$28$(not in LMFDB)
6.2.ab_h_ah_bc_ay_cq$28$(not in LMFDB)
6.2.ab_h_ad_y_ai_ci$28$(not in LMFDB)
6.2.b_ad_ad_i_e_am$28$(not in LMFDB)
6.2.b_a_d_k_i_e$28$(not in LMFDB)
6.2.b_b_b_e_a_ae$28$(not in LMFDB)
6.2.b_h_d_y_i_ci$28$(not in LMFDB)
6.2.b_h_h_bc_y_cq$28$(not in LMFDB)
6.2.d_b_aj_am_m_bs$28$(not in LMFDB)
6.2.d_f_d_a_a_e$28$(not in LMFDB)
6.2.d_l_v_bw_cu_eu$28$(not in LMFDB)
6.2.f_m_t_be_ce_do$28$(not in LMFDB)
6.2.f_t_bv_dw_gm_ka$28$(not in LMFDB)
6.2.af_o_abd_by_acw_ea$42$(not in LMFDB)
6.2.af_v_acf_fe_aji_ou$42$(not in LMFDB)
6.2.ae_g_ad_c_aq_bk$42$(not in LMFDB)
6.2.ae_m_abb_by_ade_eq$42$(not in LMFDB)
6.2.ad_n_abb_co_ady_gu$42$(not in LMFDB)
6.2.ac_a_j_ak_ai_bk$42$(not in LMFDB)
6.2.ac_g_ad_c_w_ay$42$(not in LMFDB)
6.2.ab_c_af_g_ak_y$42$(not in LMFDB)
6.2.ab_j_aj_bm_abi_ds$42$(not in LMFDB)
6.2.ab_j_af_bi_ak_dc$42$(not in LMFDB)
6.2.a_ac_ad_g_a_ae$42$(not in LMFDB)
6.2.a_ac_d_g_a_ae$42$(not in LMFDB)
6.2.a_e_ad_g_as_i$42$(not in LMFDB)
6.2.a_e_d_g_s_i$42$(not in LMFDB)
6.2.b_j_j_bm_bi_ds$42$(not in LMFDB)
6.2.c_a_aj_ak_i_bk$42$(not in LMFDB)
6.2.c_a_b_k_i_ae$42$(not in LMFDB)
6.2.c_g_d_c_aw_ay$42$(not in LMFDB)
6.2.c_g_n_w_bm_ce$42$(not in LMFDB)
6.2.d_n_bb_co_dy_gu$42$(not in LMFDB)
6.2.e_g_d_c_q_bk$42$(not in LMFDB)
6.2.e_m_bb_by_de_eq$42$(not in LMFDB)
6.2.f_o_bd_by_cw_ea$42$(not in LMFDB)
6.2.f_v_cf_fe_ji_ou$42$(not in LMFDB)
6.2.ah_w_abr_cq_aee_gi$56$(not in LMFDB)
6.2.ah_bd_adh_hm_anw_vk$56$(not in LMFDB)
6.2.af_l_an_g_i_au$56$(not in LMFDB)
6.2.af_m_ax_bq_acm_dk$56$(not in LMFDB)
6.2.af_r_abr_dm_age_jk$56$(not in LMFDB)
6.2.af_t_abz_ei_ahw_ma$56$(not in LMFDB)
6.2.ad_c_ad_q_au_m$56$(not in LMFDB)
6.2.ad_c_b_e_am_q$56$(not in LMFDB)
6.2.ad_c_f_ai_ae_u$56$(not in LMFDB)
6.2.ad_d_ad_g_a_am$56$(not in LMFDB)
6.2.ad_f_ah_e_e_ai$56$(not in LMFDB)
6.2.ad_g_al_u_abg_bw$56$(not in LMFDB)
6.2.ad_j_av_bq_acu_ee$56$(not in LMFDB)
6.2.ad_j_ar_be_abw_cq$56$(not in LMFDB)
6.2.ad_j_an_s_am_q$56$(not in LMFDB)
6.2.ad_j_aj_g_y_abk$56$(not in LMFDB)
6.2.ad_l_az_ca_ado_fg$56$(not in LMFDB)
6.2.ad_n_az_ck_adk_ge$56$(not in LMFDB)
6.2.ab_ac_d_e_ae_ae$56$(not in LMFDB)
6.2.ab_ab_ab_c_a_e$56$(not in LMFDB)
6.2.ab_ab_d_ac_ae_q$56$(not in LMFDB)
6.2.ab_ab_h_ag_ai_bc$56$(not in LMFDB)
6.2.ab_a_b_ac_a_i$56$(not in LMFDB)
6.2.ab_b_af_a_e_i$56$(not in LMFDB)
6.2.ab_d_ab_c_a_a$56$(not in LMFDB)
6.2.ab_f_al_s_abg_ca$56$(not in LMFDB)
6.2.ab_f_ah_o_ay_bc$56$(not in LMFDB)
6.2.ab_f_ad_k_ae_q$56$(not in LMFDB)
6.2.ab_f_b_g_q_e$56$(not in LMFDB)
6.2.ab_h_al_y_abs_ce$56$(not in LMFDB)
6.2.ab_h_b_m_bc_i$56$(not in LMFDB)
6.2.ab_j_ah_bm_ay_ds$56$(not in LMFDB)
6.2.b_ac_ad_e_e_ae$56$(not in LMFDB)
6.2.b_ab_ah_ag_i_bc$56$(not in LMFDB)
6.2.b_ab_ad_ac_e_q$56$(not in LMFDB)
6.2.b_ab_b_c_a_e$56$(not in LMFDB)
6.2.b_a_ab_ac_a_i$56$(not in LMFDB)
6.2.b_b_f_a_ae_i$56$(not in LMFDB)
6.2.b_d_b_c_a_a$56$(not in LMFDB)
6.2.b_f_ab_g_aq_e$56$(not in LMFDB)
6.2.b_f_d_k_e_q$56$(not in LMFDB)
6.2.b_f_h_o_y_bc$56$(not in LMFDB)
6.2.b_f_l_s_bg_ca$56$(not in LMFDB)
6.2.b_h_ab_m_abc_i$56$(not in LMFDB)
6.2.b_h_l_y_bs_ce$56$(not in LMFDB)
6.2.b_j_h_bm_y_ds$56$(not in LMFDB)
6.2.d_c_af_ai_e_u$56$(not in LMFDB)
6.2.d_c_ab_e_m_q$56$(not in LMFDB)
6.2.d_c_d_q_u_m$56$(not in LMFDB)
6.2.d_d_d_g_a_am$56$(not in LMFDB)
6.2.d_f_h_e_ae_ai$56$(not in LMFDB)
6.2.d_g_l_u_bg_bw$56$(not in LMFDB)
6.2.d_j_j_g_ay_abk$56$(not in LMFDB)
6.2.d_j_n_s_m_q$56$(not in LMFDB)
6.2.d_j_r_be_bw_cq$56$(not in LMFDB)
6.2.d_j_v_bq_cu_ee$56$(not in LMFDB)
6.2.d_l_z_ca_do_fg$56$(not in LMFDB)
6.2.d_n_z_ck_dk_ge$56$(not in LMFDB)
6.2.f_l_n_g_ai_au$56$(not in LMFDB)
6.2.f_m_x_bq_cm_dk$56$(not in LMFDB)
6.2.f_r_br_dm_ge_jk$56$(not in LMFDB)
6.2.f_t_bz_ei_hw_ma$56$(not in LMFDB)
6.2.h_w_br_cq_ee_gi$56$(not in LMFDB)
6.2.h_bd_dh_hm_nw_vk$56$(not in LMFDB)
6.2.af_g_l_abe_ac_ce$84$(not in LMFDB)
6.2.af_n_ar_ac_cc_aei$84$(not in LMFDB)
6.2.ae_e_f_ao_g_i$84$(not in LMFDB)
6.2.ae_k_at_bi_aci_do$84$(not in LMFDB)
6.2.ad_ab_p_as_as_cm$84$(not in LMFDB)
6.2.ad_f_ad_ag_s_abg$84$(not in LMFDB)
6.2.ad_h_aj_g_g_aq$84$(not in LMFDB)
6.2.ac_ac_d_g_c_ay$84$(not in LMFDB)
6.2.ac_ac_n_ao_as_ce$84$(not in LMFDB)
6.2.ac_e_aj_s_abc_bk$84$(not in LMFDB)
6.2.ac_e_b_ac_m_ae$84$(not in LMFDB)
6.2.ab_ag_d_w_ac_ace$84$(not in LMFDB)
6.2.ab_af_f_k_ag_aq$84$(not in LMFDB)
6.2.ab_b_ab_ac_g_aq$84$(not in LMFDB)
6.2.ab_b_d_ag_ac_a$84$(not in LMFDB)
6.2.ab_d_ad_c_c_a$84$(not in LMFDB)
6.2.a_ae_ad_g_g_ai$84$(not in LMFDB)
6.2.a_ae_d_g_ag_ai$84$(not in LMFDB)
6.2.a_c_ad_g_am_e$84$(not in LMFDB)
6.2.a_c_d_g_m_e$84$(not in LMFDB)
6.2.b_ag_ad_w_c_ace$84$(not in LMFDB)
6.2.b_af_af_k_g_aq$84$(not in LMFDB)
6.2.b_b_ad_ag_c_a$84$(not in LMFDB)
6.2.b_b_b_ac_ag_aq$84$(not in LMFDB)
6.2.b_d_d_c_ac_a$84$(not in LMFDB)
6.2.c_ac_an_ao_s_ce$84$(not in LMFDB)
6.2.c_ac_ad_g_ac_ay$84$(not in LMFDB)
6.2.c_e_ab_ac_am_ae$84$(not in LMFDB)
6.2.c_e_j_s_bc_bk$84$(not in LMFDB)
6.2.d_ab_ap_as_s_cm$84$(not in LMFDB)
6.2.d_f_d_ag_as_abg$84$(not in LMFDB)
6.2.d_h_j_g_ag_aq$84$(not in LMFDB)
6.2.e_e_af_ao_ag_i$84$(not in LMFDB)
6.2.e_k_t_bi_ci_do$84$(not in LMFDB)
6.2.f_g_al_abe_c_ce$84$(not in LMFDB)
6.2.f_n_r_ac_acc_aei$84$(not in LMFDB)
6.2.aj_bm_adt_gk_aig_km$168$(not in LMFDB)
6.2.aj_bt_afx_pa_abdu_bvc$168$(not in LMFDB)
6.2.ai_bg_adf_gc_ajm_no$168$(not in LMFDB)
6.2.ah_x_abp_be_bi_aea$168$(not in LMFDB)
6.2.ah_y_acb_dk_aew_gu$168$(not in LMFDB)
6.2.ah_bd_adf_he_ana_ua$168$(not in LMFDB)
6.2.ah_bf_adr_iu_aqs_bae$168$(not in LMFDB)
6.2.ag_s_abn_cu_aeq_gy$168$(not in LMFDB)
6.2.ag_s_abl_co_aek_gu$168$(not in LMFDB)
6.2.ag_s_abb_g_co_afo$168$(not in LMFDB)
6.2.ag_u_abv_dk_afm_ia$168$(not in LMFDB)
6.2.af_k_aj_k_abm_dc$168$(not in LMFDB)
6.2.af_l_al_c_g_ai$168$(not in LMFDB)
6.2.af_n_at_m_o_abo$168$(not in LMFDB)
6.2.af_r_abp_di_afu_iy$168$(not in LMFDB)
6.2.af_r_abl_co_adq_fg$168$(not in LMFDB)
6.2.af_t_abx_ee_ahi_lk$168$(not in LMFDB)
6.2.ae_i_ar_bk_ace_cy$168$(not in LMFDB)
6.2.ae_i_al_s_abm_cm$168$(not in LMFDB)
6.2.ae_i_ah_ae_y_abs$168$(not in LMFDB)
6.2.ae_i_af_ag_w_abg$168$(not in LMFDB)
6.2.ae_k_ax_bq_acq_ea$168$(not in LMFDB)
6.2.ae_k_av_bo_aco_ds$168$(not in LMFDB)
6.2.ae_k_al_a_bi_acm$168$(not in LMFDB)
6.2.ad_a_h_ae_ac_a$168$(not in LMFDB)
6.2.ad_c_j_ao_ak_bw$168$(not in LMFDB)
6.2.ad_d_d_ag_ag_y$168$(not in LMFDB)
6.2.ad_e_af_m_aw_bg$168$(not in LMFDB)
6.2.ad_f_af_e_c_ai$168$(not in LMFDB)
6.2.ad_h_ah_ae_ba_ace$168$(not in LMFDB)
6.2.ad_i_ar_bc_abq_cm$168$(not in LMFDB)
6.2.ad_j_at_bq_aco_ea$168$(not in LMFDB)
6.2.ad_j_ap_be_abq_cu$168$(not in LMFDB)
6.2.ad_l_ax_ca_ade_fg$168$(not in LMFDB)
6.2.ad_l_at_bo_aby_dk$168$(not in LMFDB)
6.2.ad_p_abf_dg_aew_iy$168$(not in LMFDB)
6.2.ac_a_b_ae_g_a$168$(not in LMFDB)
6.2.ac_c_ah_m_aq_bc$168$(not in LMFDB)
6.2.ac_c_af_o_as_q$168$(not in LMFDB)
6.2.ac_c_ad_e_ai_q$168$(not in LMFDB)
6.2.ac_c_ab_a_i_au$168$(not in LMFDB)
6.2.ac_c_b_ae_a_e$168$(not in LMFDB)
6.2.ac_c_f_ag_c_q$168$(not in LMFDB)
6.2.ac_e_an_s_abc_ce$168$(not in LMFDB)
6.2.ac_e_ah_m_aw_bg$168$(not in LMFDB)
6.2.ac_e_ad_ac_m_ay$168$(not in LMFDB)
6.2.ac_e_ab_a_o_aq$168$(not in LMFDB)
6.2.ac_g_al_u_abk_bw$168$(not in LMFDB)
6.2.ac_i_ap_bc_aby_cm$168$(not in LMFDB)
6.2.ab_ad_f_ae_ag_y$168$(not in LMFDB)
6.2.ab_ac_ab_o_ag_aq$168$(not in LMFDB)
6.2.ab_ab_b_g_ac_ai$168$(not in LMFDB)
6.2.ab_a_f_a_ac_q$168$(not in LMFDB)
6.2.ab_b_b_a_ac_i$168$(not in LMFDB)
6.2.ab_d_ab_ae_g_ay$168$(not in LMFDB)
6.2.ab_f_af_s_ao_bo$168$(not in LMFDB)
6.2.ab_f_ad_e_c_ai$168$(not in LMFDB)
6.2.ab_f_ab_o_ag_bo$168$(not in LMFDB)
6.2.ab_h_aj_bc_abe_cu$168$(not in LMFDB)
6.2.ab_h_af_y_ao_ce$168$(not in LMFDB)
6.2.ab_l_aj_ca_abi_fg$168$(not in LMFDB)
6.2.a_ac_af_ae_k_q$168$(not in LMFDB)
6.2.a_ac_f_ae_ak_q$168$(not in LMFDB)
6.2.a_a_aj_a_a_bk$168$(not in LMFDB)
6.2.a_a_af_a_a_q$168$(not in LMFDB)
6.2.a_a_ad_g_ag_a$168$(not in LMFDB)
6.2.a_a_ab_a_a_ae$168$(not in LMFDB)
6.2.a_a_b_a_a_ae$168$(not in LMFDB)
6.2.a_a_d_g_g_a$168$(not in LMFDB)
6.2.a_a_f_a_a_q$168$(not in LMFDB)
6.2.a_a_j_a_a_bk$168$(not in LMFDB)
6.2.a_c_af_e_ak_q$168$(not in LMFDB)
6.2.a_c_ab_ac_e_ai$168$(not in LMFDB)
6.2.a_c_b_ac_ae_ai$168$(not in LMFDB)
6.2.a_c_f_e_k_q$168$(not in LMFDB)
6.2.a_e_af_i_au_q$168$(not in LMFDB)
6.2.a_e_f_i_u_q$168$(not in LMFDB)
6.2.a_g_af_m_abe_q$168$(not in LMFDB)
6.2.a_g_f_m_be_q$168$(not in LMFDB)
6.2.b_ad_af_ae_g_y$168$(not in LMFDB)
6.2.b_ac_b_o_g_aq$168$(not in LMFDB)
6.2.b_ab_ab_g_c_ai$168$(not in LMFDB)
6.2.b_a_af_a_c_q$168$(not in LMFDB)
6.2.b_b_ab_a_c_i$168$(not in LMFDB)
6.2.b_d_b_ae_ag_ay$168$(not in LMFDB)
6.2.b_f_b_o_g_bo$168$(not in LMFDB)
6.2.b_f_d_e_ac_ai$168$(not in LMFDB)
6.2.b_f_f_s_o_bo$168$(not in LMFDB)
6.2.b_h_f_y_o_ce$168$(not in LMFDB)
6.2.b_h_j_bc_be_cu$168$(not in LMFDB)
6.2.b_l_j_ca_bi_fg$168$(not in LMFDB)
6.2.c_a_ab_ae_ag_a$168$(not in LMFDB)
6.2.c_c_af_ag_ac_q$168$(not in LMFDB)
6.2.c_c_ab_ae_a_e$168$(not in LMFDB)
6.2.c_c_b_a_ai_au$168$(not in LMFDB)
6.2.c_c_d_e_i_q$168$(not in LMFDB)
6.2.c_c_f_o_s_q$168$(not in LMFDB)
6.2.c_c_h_m_q_bc$168$(not in LMFDB)
6.2.c_e_b_a_ao_aq$168$(not in LMFDB)
6.2.c_e_d_ac_am_ay$168$(not in LMFDB)
6.2.c_e_h_m_w_bg$168$(not in LMFDB)
6.2.c_e_n_s_bc_ce$168$(not in LMFDB)
6.2.c_g_l_u_bk_bw$168$(not in LMFDB)
6.2.c_i_p_bc_by_cm$168$(not in LMFDB)
6.2.d_a_ah_ae_c_a$168$(not in LMFDB)
6.2.d_c_aj_ao_k_bw$168$(not in LMFDB)
6.2.d_d_ad_ag_g_y$168$(not in LMFDB)
6.2.d_e_f_m_w_bg$168$(not in LMFDB)
6.2.d_f_f_e_ac_ai$168$(not in LMFDB)
6.2.d_h_h_ae_aba_ace$168$(not in LMFDB)
6.2.d_i_r_bc_bq_cm$168$(not in LMFDB)
6.2.d_j_p_be_bq_cu$168$(not in LMFDB)
6.2.d_j_t_bq_co_ea$168$(not in LMFDB)
6.2.d_l_t_bo_by_dk$168$(not in LMFDB)
6.2.d_l_x_ca_de_fg$168$(not in LMFDB)
6.2.d_p_bf_dg_ew_iy$168$(not in LMFDB)
6.2.e_i_f_ag_aw_abg$168$(not in LMFDB)
6.2.e_i_h_ae_ay_abs$168$(not in LMFDB)
6.2.e_i_l_s_bm_cm$168$(not in LMFDB)
6.2.e_i_r_bk_ce_cy$168$(not in LMFDB)
6.2.e_k_l_a_abi_acm$168$(not in LMFDB)
6.2.e_k_v_bo_co_ds$168$(not in LMFDB)
6.2.e_k_x_bq_cq_ea$168$(not in LMFDB)
6.2.f_k_j_k_bm_dc$168$(not in LMFDB)
6.2.f_l_l_c_ag_ai$168$(not in LMFDB)
6.2.f_n_t_m_ao_abo$168$(not in LMFDB)
6.2.f_r_bl_co_dq_fg$168$(not in LMFDB)
6.2.f_r_bp_di_fu_iy$168$(not in LMFDB)
6.2.f_t_bx_ee_hi_lk$168$(not in LMFDB)
6.2.g_s_bb_g_aco_afo$168$(not in LMFDB)
6.2.g_s_bl_co_ek_gu$168$(not in LMFDB)
6.2.g_s_bn_cu_eq_gy$168$(not in LMFDB)
6.2.g_u_bv_dk_fm_ia$168$(not in LMFDB)
6.2.h_x_bp_be_abi_aea$168$(not in LMFDB)
6.2.h_y_cb_dk_ew_gu$168$(not in LMFDB)
6.2.h_bd_df_he_na_ua$168$(not in LMFDB)
6.2.h_bf_dr_iu_qs_bae$168$(not in LMFDB)
6.2.i_bg_df_gc_jm_no$168$(not in LMFDB)
6.2.j_bm_dt_gk_ig_km$168$(not in LMFDB)
6.2.j_bt_fx_pa_bdu_bvc$168$(not in LMFDB)