Properties

Label 6.2.ab_d_ab_c_i_ag
Base field $\F_{2}$
Dimension $6$
$p$-rank $3$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $6$
L-polynomial:  $1 - x + 3 x^{2} - x^{3} + 2 x^{4} + 8 x^{5} - 6 x^{6} + 16 x^{7} + 8 x^{8} - 8 x^{9} + 48 x^{10} - 32 x^{11} + 64 x^{12}$
Frobenius angles:  $\pm0.163712411094$, $\pm0.266613952028$, $\pm0.401115849757$, $\pm0.575823472753$, $\pm0.593009196599$, $\pm0.919248159814$
Angle rank:  $6$ (numerical)
Number field:  12.0.2498903384004718848.1
Galois group:  12T293
Jacobians:  $0$

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable.

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/3, 1/3, 1/3, 2/3, 2/3, 2/3, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $102$ $14076$ $524178$ $16271856$ $2496584742$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $10$ $14$ $14$ $62$ $70$ $100$ $318$ $518$ $910$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 12.0.2498903384004718848.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
6.2.b_d_b_c_ai_ag$2$(not in LMFDB)