Properties

Label 5.3.e_m_bc_cd_ec
Base field $\F_{3}$
Dimension $5$
$p$-rank $5$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $5$
L-polynomial:  $1 + 4 x + 12 x^{2} + 28 x^{3} + 55 x^{4} + 106 x^{5} + 165 x^{6} + 252 x^{7} + 324 x^{8} + 324 x^{9} + 243 x^{10}$
Frobenius angles:  $\pm0.288649743394$, $\pm0.450937818585$, $\pm0.636755342595$, $\pm0.670163917589$, $\pm0.982326615198$
Angle rank:  $5$ (numerical)
Number field:  10.0.42593327086016.1
Galois group:  $C_2 \wr S_5$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $5$
Slopes:  $[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1514$ $130204$ $14849312$ $3296244464$ $1059423923914$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $18$ $32$ $78$ $298$ $576$ $2304$ $6494$ $19274$ $59198$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 10.0.42593327086016.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
5.3.ae_m_abc_cd_aec$2$(not in LMFDB)