Properties

 Label 5.2.ah_ba_aco_ey_ahs Base Field $\F_{2}$ Dimension $5$ Ordinary No $p$-rank $1$ Principally polarizable Yes Contains a Jacobian No

Invariants

 Base field: $\F_{2}$ Dimension: $5$ L-polynomial: $( 1 - x + 2 x^{2} )( 1 - 2 x + 2 x^{2} )^{2}( 1 - 2 x + 2 x^{2} - 4 x^{3} + 4 x^{4} )$ Frobenius angles: $\pm0.0833333333333$, $\pm0.250000000000$, $\pm0.250000000000$, $\pm0.384973271919$, $\pm0.583333333333$ Angle rank: $1$ (numerical)

This isogeny class is not simple.

Newton polygon

 $p$-rank: $1$ Slopes: $[0, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1/2, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 2 2600 59150 1690000 48853222 999635000 26198897902 1086632820000 35596960530950 1065366638765000

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ -4 8 14 24 46 56 94 256 518 968

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2}$
 The isogeny class factors as 1.2.ac 2 $\times$ 1.2.ab $\times$ 2.2.ac_c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: 1.2.ac 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-1})$$$)$ 1.2.ab : $$\Q(\sqrt{-7})$$. 2.2.ac_c : $$\Q(\zeta_{12})$$.
Endomorphism algebra over $\overline{\F}_{2}$
 The base change of $A$ to $\F_{2^{12}}$ is 1.4096.bv $\times$ 1.4096.ey 4 . The endomorphism algebra for each factor is: 1.4096.bv : $$\Q(\sqrt{-7})$$. 1.4096.ey 4 : $\mathrm{M}_{4}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$.
All geometric endomorphisms are defined over $\F_{2^{12}}$.
Remainder of endomorphism lattice by field
• Endomorphism algebra over $\F_{2^{2}}$  The base change of $A$ to $\F_{2^{2}}$ is 1.4.a 2 $\times$ 1.4.d $\times$ 2.4.a_ae. The endomorphism algebra for each factor is: 1.4.a 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-1})$$$)$ 1.4.d : $$\Q(\sqrt{-7})$$. 2.4.a_ae : $$\Q(\zeta_{12})$$.
• Endomorphism algebra over $\F_{2^{3}}$  The base change of $A$ to $\F_{2^{3}}$ is 1.8.ae 2 $\times$ 1.8.e 2 $\times$ 1.8.f. The endomorphism algebra for each factor is: 1.8.ae 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-1})$$$)$ 1.8.e 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-1})$$$)$ 1.8.f : $$\Q(\sqrt{-7})$$.
• Endomorphism algebra over $\F_{2^{4}}$  The base change of $A$ to $\F_{2^{4}}$ is 1.16.ae 2 $\times$ 1.16.ab $\times$ 1.16.i 2 . The endomorphism algebra for each factor is: 1.16.ae 2 : $\mathrm{M}_{2}($$$\Q(\sqrt{-3})$$$)$ 1.16.ab : $$\Q(\sqrt{-7})$$. 1.16.i 2 : $\mathrm{M}_{2}(B)$, where $B$ is the quaternion algebra over $$\Q$$ ramified at $2$ and $\infty$.
• Endomorphism algebra over $\F_{2^{6}}$  The base change of $A$ to $\F_{2^{6}}$ is 1.64.aj $\times$ 1.64.a 4 . The endomorphism algebra for each factor is: 1.64.aj : $$\Q(\sqrt{-7})$$. 1.64.a 4 : $\mathrm{M}_{4}($$$\Q(\sqrt{-1})$$$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
 Twist Extension Degree Common base change 5.2.af_o_abe_ce_adk $2$ (not in LMFDB) 5.2.ad_g_ak_q_ay $2$ (not in LMFDB) 5.2.ad_g_ac_ai_y $2$ (not in LMFDB) 5.2.ab_c_ag_i_ai $2$ (not in LMFDB) 5.2.ab_c_c_a_i $2$ (not in LMFDB) 5.2.b_c_ac_a_ai $2$ (not in LMFDB) 5.2.b_c_g_i_i $2$ (not in LMFDB) 5.2.d_g_c_ai_ay $2$ (not in LMFDB) 5.2.d_g_k_q_y $2$ (not in LMFDB) 5.2.f_o_be_ce_dk $2$ (not in LMFDB) 5.2.h_ba_co_ey_hs $2$ (not in LMFDB) 5.2.ab_c_a_ae_e $3$ (not in LMFDB) 5.2.ab_c_a_i_ai $3$ (not in LMFDB) 5.2.f_o_be_ce_dk $3$ (not in LMFDB)
Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 5.2.af_o_abe_ce_adk $2$ (not in LMFDB) 5.2.ad_g_ak_q_ay $2$ (not in LMFDB) 5.2.ad_g_ac_ai_y $2$ (not in LMFDB) 5.2.ab_c_ag_i_ai $2$ (not in LMFDB) 5.2.ab_c_c_a_i $2$ (not in LMFDB) 5.2.b_c_ac_a_ai $2$ (not in LMFDB) 5.2.b_c_g_i_i $2$ (not in LMFDB) 5.2.d_g_c_ai_ay $2$ (not in LMFDB) 5.2.d_g_k_q_y $2$ (not in LMFDB) 5.2.f_o_be_ce_dk $2$ (not in LMFDB) 5.2.h_ba_co_ey_hs $2$ (not in LMFDB) 5.2.ab_c_a_ae_e $3$ (not in LMFDB) 5.2.ab_c_a_i_ai $3$ (not in LMFDB) 5.2.f_o_be_ce_dk $3$ (not in LMFDB) 5.2.af_o_abe_ce_adk $4$ (not in LMFDB) 5.2.ad_g_ak_q_ay $4$ (not in LMFDB) 5.2.ad_g_ac_ai_y $4$ (not in LMFDB) 5.2.ab_c_ag_i_ai $4$ (not in LMFDB) 5.2.ab_c_c_a_i $4$ (not in LMFDB) 5.2.b_c_ac_a_ai $4$ (not in LMFDB) 5.2.b_c_g_i_i $4$ (not in LMFDB) 5.2.d_g_c_ai_ay $4$ (not in LMFDB) 5.2.d_g_k_q_y $4$ (not in LMFDB) 5.2.f_o_be_ce_dk $4$ (not in LMFDB) 5.2.h_ba_co_ey_hs $4$ (not in LMFDB) 5.2.aj_bq_aey_ku_aro $6$ (not in LMFDB) 5.2.ah_ba_acm_eq_ahc $6$ (not in LMFDB) 5.2.af_o_abg_ci_ado $6$ (not in LMFDB) 5.2.af_o_abe_ce_adk $6$ (not in LMFDB) 5.2.af_o_ay_bg_abo $6$ (not in LMFDB) 5.2.ad_g_aq_bc_abk $6$ (not in LMFDB) 5.2.ad_g_ak_q_ay $6$ (not in LMFDB) 5.2.ad_g_ai_q_ay $6$ (not in LMFDB) 5.2.ad_g_ac_ai_y $6$ (not in LMFDB) 5.2.ab_c_ag_i_ai $6$ (not in LMFDB) 5.2.ab_c_a_ae_e $6$ (not in LMFDB) 5.2.ab_c_a_i_ai $6$ (not in LMFDB) 5.2.ab_c_c_a_i $6$ (not in LMFDB) 5.2.b_c_ac_a_ai $6$ (not in LMFDB) 5.2.b_c_a_ae_ae $6$ (not in LMFDB) 5.2.b_c_a_i_i $6$ (not in LMFDB) 5.2.b_c_g_i_i $6$ (not in LMFDB) 5.2.d_g_c_ai_ay $6$ (not in LMFDB) 5.2.d_g_i_q_y $6$ (not in LMFDB) 5.2.d_g_k_q_y $6$ (not in LMFDB) 5.2.d_g_q_bc_bk $6$ (not in LMFDB) 5.2.f_o_y_bg_bo $6$ (not in LMFDB) 5.2.f_o_be_ce_dk $6$ (not in LMFDB) 5.2.f_o_bg_ci_do $6$ (not in LMFDB) 5.2.h_ba_cm_eq_hc $6$ (not in LMFDB) 5.2.h_ba_co_ey_hs $6$ (not in LMFDB) 5.2.j_bq_ey_ku_ro $6$ (not in LMFDB) 5.2.af_m_ao_e_i $8$ (not in LMFDB) 5.2.af_q_abm_cu_aei $8$ (not in LMFDB) 5.2.af_q_abi_ci_adk $8$ (not in LMFDB) 5.2.ad_c_c_ai_q $8$ (not in LMFDB) 5.2.ad_e_ac_e_ai $8$ (not in LMFDB) 5.2.ad_g_ag_e_a $8$ (not in LMFDB) 5.2.ad_i_as_bg_abw $8$ (not in LMFDB) 5.2.ad_i_ao_bc_abo $8$ (not in LMFDB) 5.2.ad_k_aw_bo_acm $8$ (not in LMFDB) 5.2.ad_k_as_bk_abw $8$ (not in LMFDB) 5.2.ab_ae_g_e_aq $8$ (not in LMFDB) 5.2.ab_ac_ac_a_q $8$ (not in LMFDB) 5.2.ab_a_c_ae_a $8$ (not in LMFDB) 5.2.ab_a_c_e_ai $8$ (not in LMFDB) 5.2.ab_c_ac_e_a $8$ (not in LMFDB) 5.2.ab_e_ag_i_aq $8$ (not in LMFDB) 5.2.ab_e_ac_e_a $8$ (not in LMFDB) 5.2.ab_e_ac_m_ai $8$ (not in LMFDB) 5.2.ab_e_c_a_q $8$ (not in LMFDB) 5.2.ab_g_ak_q_abg $8$ (not in LMFDB) 5.2.ab_g_ag_u_aq $8$ (not in LMFDB) 5.2.ab_i_ag_bc_aq $8$ (not in LMFDB) 5.2.b_ae_ag_e_q $8$ (not in LMFDB) 5.2.b_ac_c_a_aq $8$ (not in LMFDB) 5.2.b_a_ac_ae_a $8$ (not in LMFDB) 5.2.b_a_ac_e_i $8$ (not in LMFDB) 5.2.b_c_c_e_a $8$ (not in LMFDB) 5.2.b_e_ac_a_aq $8$ (not in LMFDB) 5.2.b_e_c_e_a $8$ (not in LMFDB) 5.2.b_e_c_m_i $8$ (not in LMFDB) 5.2.b_e_g_i_q $8$ (not in LMFDB) 5.2.b_g_g_u_q $8$ (not in LMFDB) 5.2.b_g_k_q_bg $8$ (not in LMFDB) 5.2.b_i_g_bc_q $8$ (not in LMFDB) 5.2.d_c_ac_ai_aq $8$ (not in LMFDB) 5.2.d_e_c_e_i $8$ (not in LMFDB) 5.2.d_g_g_e_a $8$ (not in LMFDB) 5.2.d_i_o_bc_bo $8$ (not in LMFDB) 5.2.d_i_s_bg_bw $8$ (not in LMFDB) 5.2.d_k_s_bk_bw $8$ (not in LMFDB) 5.2.d_k_w_bo_cm $8$ (not in LMFDB) 5.2.f_m_o_e_ai $8$ (not in LMFDB) 5.2.f_q_bi_ci_dk $8$ (not in LMFDB) 5.2.f_q_bm_cu_ei $8$ (not in LMFDB) 5.2.aj_bq_aey_ku_aro $12$ (not in LMFDB) 5.2.ah_ba_acm_eq_ahc $12$ (not in LMFDB) 5.2.af_o_abg_ci_ado $12$ (not in LMFDB) 5.2.af_o_abe_ce_adk $12$ (not in LMFDB) 5.2.af_o_ay_bg_abo $12$ (not in LMFDB) 5.2.ad_g_aq_bc_abk $12$ (not in LMFDB) 5.2.ad_g_ak_q_ay $12$ (not in LMFDB) 5.2.ad_g_ai_q_ay $12$ (not in LMFDB) 5.2.ad_g_ac_ai_y $12$ (not in LMFDB) 5.2.ab_c_ag_i_ai $12$ (not in LMFDB) 5.2.ab_c_a_ae_e $12$ (not in LMFDB) 5.2.ab_c_a_i_ai $12$ (not in LMFDB) 5.2.ab_c_c_a_i $12$ (not in LMFDB) 5.2.b_c_ac_a_ai $12$ (not in LMFDB) 5.2.b_c_a_ae_ae $12$ (not in LMFDB) 5.2.b_c_a_i_i $12$ (not in LMFDB) 5.2.b_c_g_i_i $12$ (not in LMFDB) 5.2.d_g_c_ai_ay $12$ (not in LMFDB) 5.2.d_g_i_q_y $12$ (not in LMFDB) 5.2.d_g_k_q_y $12$ (not in LMFDB) 5.2.d_g_q_bc_bk $12$ (not in LMFDB) 5.2.f_o_y_bg_bo $12$ (not in LMFDB) 5.2.f_o_be_ce_dk $12$ (not in LMFDB) 5.2.f_o_bg_ci_do $12$ (not in LMFDB) 5.2.h_ba_cm_eq_hc $12$ (not in LMFDB) 5.2.h_ba_co_ey_hs $12$ (not in LMFDB) 5.2.j_bq_ey_ku_ro $12$ (not in LMFDB) 5.2.ah_bc_acy_ga_ajo $24$ (not in LMFDB) 5.2.af_k_ae_ay_ce $24$ (not in LMFDB) 5.2.af_m_ao_e_i $24$ (not in LMFDB) 5.2.af_q_abm_cu_aei $24$ (not in LMFDB) 5.2.af_q_abk_cq_aea $24$ (not in LMFDB) 5.2.af_q_abi_ci_adk $24$ (not in LMFDB) 5.2.af_s_abs_dk_afg $24$ (not in LMFDB) 5.2.ad_c_c_ai_q $24$ (not in LMFDB) 5.2.ad_c_e_ai_i $24$ (not in LMFDB) 5.2.ad_e_ae_e_ae $24$ (not in LMFDB) 5.2.ad_e_ac_e_ai $24$ (not in LMFDB) 5.2.ad_e_a_am_y $24$ (not in LMFDB) 5.2.ad_g_ag_e_a $24$ (not in LMFDB) 5.2.ad_i_as_bg_abw $24$ (not in LMFDB) 5.2.ad_i_aq_bc_abs $24$ (not in LMFDB) 5.2.ad_i_ao_bc_abo $24$ (not in LMFDB) 5.2.ad_i_am_u_ay $24$ (not in LMFDB) 5.2.ad_k_aw_bo_acm $24$ (not in LMFDB) 5.2.ad_k_au_bo_ace $24$ (not in LMFDB) 5.2.ad_k_as_bk_abw $24$ (not in LMFDB) 5.2.ad_m_ay_ca_acu $24$ (not in LMFDB) 5.2.ab_ag_i_i_ay $24$ (not in LMFDB) 5.2.ab_ae_g_e_aq $24$ (not in LMFDB) 5.2.ab_ac_ac_a_q $24$ (not in LMFDB) 5.2.ab_ac_e_a_ai $24$ (not in LMFDB) 5.2.ab_ac_e_e_am $24$ (not in LMFDB) 5.2.ab_a_ae_e_e $24$ (not in LMFDB) 5.2.ab_a_a_ae_i $24$ (not in LMFDB) 5.2.ab_a_c_ae_a $24$ (not in LMFDB) 5.2.ab_a_c_e_ai $24$ (not in LMFDB) 5.2.ab_c_ac_e_a $24$ (not in LMFDB) 5.2.ab_c_a_ai_i $24$ (not in LMFDB) 5.2.ab_c_a_e_ae $24$ (not in LMFDB) 5.2.ab_e_ai_m_au $24$ (not in LMFDB) 5.2.ab_e_ag_i_aq $24$ (not in LMFDB) 5.2.ab_e_ae_m_ai $24$ (not in LMFDB) 5.2.ab_e_ac_e_a $24$ (not in LMFDB) 5.2.ab_e_ac_m_ai $24$ (not in LMFDB) 5.2.ab_e_c_a_q $24$ (not in LMFDB) 5.2.ab_g_ak_q_abg $24$ (not in LMFDB) 5.2.ab_g_ag_u_aq $24$ (not in LMFDB) 5.2.ab_g_ae_q_ai $24$ (not in LMFDB) 5.2.ab_g_ae_u_am $24$ (not in LMFDB) 5.2.ab_i_ai_bc_ay $24$ (not in LMFDB) 5.2.ab_i_ag_bc_aq $24$ (not in LMFDB) 5.2.ab_k_ai_bo_ay $24$ (not in LMFDB) 5.2.b_ag_ai_i_y $24$ (not in LMFDB) 5.2.b_ae_ag_e_q $24$ (not in LMFDB) 5.2.b_ac_ae_a_i $24$ (not in LMFDB) 5.2.b_ac_ae_e_m $24$ (not in LMFDB) 5.2.b_ac_c_a_aq $24$ (not in LMFDB) 5.2.b_a_ac_ae_a $24$ (not in LMFDB) 5.2.b_a_ac_e_i $24$ (not in LMFDB) 5.2.b_a_a_ae_ai $24$ (not in LMFDB) 5.2.b_a_e_e_ae $24$ (not in LMFDB) 5.2.b_c_a_ai_ai $24$ (not in LMFDB) 5.2.b_c_a_e_e $24$ (not in LMFDB) 5.2.b_c_c_e_a $24$ (not in LMFDB) 5.2.b_e_ac_a_aq $24$ (not in LMFDB) 5.2.b_e_c_e_a $24$ (not in LMFDB) 5.2.b_e_c_m_i $24$ (not in LMFDB) 5.2.b_e_e_m_i $24$ (not in LMFDB) 5.2.b_e_g_i_q $24$ (not in LMFDB) 5.2.b_e_i_m_u $24$ (not in LMFDB) 5.2.b_g_e_q_i $24$ (not in LMFDB) 5.2.b_g_e_u_m $24$ (not in LMFDB) 5.2.b_g_g_u_q $24$ (not in LMFDB) 5.2.b_g_k_q_bg $24$ (not in LMFDB) 5.2.b_i_g_bc_q $24$ (not in LMFDB) 5.2.b_i_i_bc_y $24$ (not in LMFDB) 5.2.b_k_i_bo_y $24$ (not in LMFDB) 5.2.d_c_ae_ai_ai $24$ (not in LMFDB) 5.2.d_c_ac_ai_aq $24$ (not in LMFDB) 5.2.d_e_a_am_ay $24$ (not in LMFDB) 5.2.d_e_c_e_i $24$ (not in LMFDB) 5.2.d_e_e_e_e $24$ (not in LMFDB) 5.2.d_g_g_e_a $24$ (not in LMFDB) 5.2.d_i_m_u_y $24$ (not in LMFDB) 5.2.d_i_o_bc_bo $24$ (not in LMFDB) 5.2.d_i_q_bc_bs $24$ (not in LMFDB) 5.2.d_i_s_bg_bw $24$ (not in LMFDB) 5.2.d_k_s_bk_bw $24$ (not in LMFDB) 5.2.d_k_u_bo_ce $24$ (not in LMFDB) 5.2.d_k_w_bo_cm $24$ (not in LMFDB) 5.2.d_m_y_ca_cu $24$ (not in LMFDB) 5.2.f_k_e_ay_ace $24$ (not in LMFDB) 5.2.f_m_o_e_ai $24$ (not in LMFDB) 5.2.f_q_bi_ci_dk $24$ (not in LMFDB) 5.2.f_q_bk_cq_ea $24$ (not in LMFDB) 5.2.f_q_bm_cu_ei $24$ (not in LMFDB) 5.2.f_s_bs_dk_fg $24$ (not in LMFDB) 5.2.h_bc_cy_ga_jo $24$ (not in LMFDB) 5.2.ad_g_ag_a_e $30$ (not in LMFDB) 5.2.ab_c_ac_a_ae $30$ (not in LMFDB) 5.2.b_c_c_a_e $30$ (not in LMFDB) 5.2.d_g_g_a_ae $30$ (not in LMFDB) 5.2.ab_c_a_a_a $48$ (not in LMFDB) 5.2.b_c_a_a_a $48$ (not in LMFDB) 5.2.ad_g_ag_a_e $60$ (not in LMFDB) 5.2.ab_c_ac_a_ae $60$ (not in LMFDB) 5.2.b_c_c_a_e $60$ (not in LMFDB) 5.2.d_g_g_a_ae $60$ (not in LMFDB) 5.2.ab_a_c_a_ae $120$ (not in LMFDB) 5.2.ab_e_ac_i_ae $120$ (not in LMFDB) 5.2.b_a_ac_a_e $120$ (not in LMFDB) 5.2.b_e_c_i_e $120$ (not in LMFDB)