Properties

Label 4.3.ah_x_abx_dj
Base Field $\F_{3}$
Dimension $4$
Ordinary No
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $( 1 - 3 x + 3 x^{2} )( 1 - 4 x + 8 x^{2} - 13 x^{3} + 24 x^{4} - 36 x^{5} + 27 x^{6} )$
Frobenius angles:  $\pm0.102762435325$, $\pm0.166666666667$, $\pm0.278353759721$, $\pm0.643265352440$
Angle rank:  $3$ (numerical)

This isogeny class is not simple.

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 7 5537 409444 59672249 4537455167 281119337072 23392114502071 1922148223120489 150528923543557888 12264624935213421617

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 7 21 107 307 727 2237 6803 19740 59567

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ad $\times$ 3.3.ae_i_an and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{6}}$ is 1.729.cc $\times$ 3.729.acf_dba_adgnl. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{3^{6}}$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
4.3.ab_ab_ab_j$2$(not in LMFDB)
4.3.b_ab_b_j$2$(not in LMFDB)
4.3.h_x_bx_dj$2$(not in LMFDB)
4.3.ae_l_az_bw$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
4.3.ab_ab_ab_j$2$(not in LMFDB)
4.3.b_ab_b_j$2$(not in LMFDB)
4.3.h_x_bx_dj$2$(not in LMFDB)
4.3.ae_l_az_bw$3$(not in LMFDB)
4.3.e_l_z_bw$6$(not in LMFDB)