Properties

Label 4.3.ah_x_abw_dg
Base Field $\F_{3}$
Dimension $4$
Ordinary No
$p$-rank $2$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $( 1 - 3 x + 3 x^{2} )^{2}( 1 - x + 2 x^{2} - 3 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.166666666667$, $\pm0.166666666667$, $\pm0.235082516458$, $\pm0.648854628963$
Angle rank:  $2$ (numerical)

This isogeny class is not simple.

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1/2, 1/2, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 8 6272 476672 72077824 5294214808 310927425536 24317685973624 1894394635241472 146275717043144192 12010242165980304512

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 7 24 123 347 802 2321 6707 19176 58327

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ad 2 $\times$ 2.3.ab_c and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{6}}$ is 1.729.cc 2 $\times$ 2.729.abk_bas. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{3^{6}}$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
4.3.af_l_am_m$2$(not in LMFDB)
4.3.ab_ab_a_m$2$(not in LMFDB)
4.3.b_ab_a_m$2$(not in LMFDB)
4.3.f_l_m_m$2$(not in LMFDB)
4.3.h_x_bw_dg$2$(not in LMFDB)
4.3.ae_l_ay_bw$3$(not in LMFDB)
4.3.ab_ab_a_m$3$(not in LMFDB)
4.3.ab_i_aj_be$3$(not in LMFDB)
4.3.c_f_g_m$3$(not in LMFDB)
4.3.f_l_m_m$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
4.3.af_l_am_m$2$(not in LMFDB)
4.3.ab_ab_a_m$2$(not in LMFDB)
4.3.b_ab_a_m$2$(not in LMFDB)
4.3.f_l_m_m$2$(not in LMFDB)
4.3.h_x_bw_dg$2$(not in LMFDB)
4.3.ae_l_ay_bw$3$(not in LMFDB)
4.3.ab_ab_a_m$3$(not in LMFDB)
4.3.ab_i_aj_be$3$(not in LMFDB)
4.3.c_f_g_m$3$(not in LMFDB)
4.3.f_l_m_m$3$(not in LMFDB)
4.3.ab_f_ag_y$4$(not in LMFDB)
4.3.b_f_g_y$4$(not in LMFDB)
4.3.af_l_am_m$6$(not in LMFDB)
4.3.ae_l_ay_bw$6$(not in LMFDB)
4.3.ac_f_ag_m$6$(not in LMFDB)
4.3.ab_ab_a_m$6$(not in LMFDB)
4.3.ab_i_aj_be$6$(not in LMFDB)
4.3.b_ab_a_m$6$(not in LMFDB)
4.3.b_i_j_be$6$(not in LMFDB)
4.3.c_f_g_m$6$(not in LMFDB)
4.3.e_l_y_bw$6$(not in LMFDB)
4.3.ab_ae_d_g$12$(not in LMFDB)
4.3.ab_f_ag_y$12$(not in LMFDB)
4.3.b_ae_ad_g$12$(not in LMFDB)
4.3.b_f_g_y$12$(not in LMFDB)
4.3.ab_c_ad_s$24$(not in LMFDB)
4.3.b_c_d_s$24$(not in LMFDB)