Properties

Label 4.3.ah_v_abl_cf
Base Field $\F_{3}$
Dimension $4$
Ordinary No
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $( 1 - 3 x + 3 x^{2} )( 1 - 4 x + 6 x^{2} - 7 x^{3} + 18 x^{4} - 36 x^{5} + 27 x^{6} )$
Frobenius angles:  $\pm0.0452398905210$, $\pm0.166666666667$, $\pm0.239335307006$, $\pm0.691360448188$
Angle rank:  $3$ (numerical)

This isogeny class is not simple.

Newton polygon

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1/2, 1/2, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 3465 321020 57882825 3993666025 274969038960 23543819129605 1809002263293225 146011266846851840 12156510723031191825

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -3 3 15 107 277 711 2251 6403 19140 59043

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ad $\times$ 3.3.ae_g_ah and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{6}}$ is 1.729.cc $\times$ 3.729.acv_eli_afacr. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{3^{6}}$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
4.3.b_ad_b_p$2$(not in LMFDB)
4.3.h_v_bl_cf$2$(not in LMFDB)
4.3.ae_j_at_bk$3$(not in LMFDB)
4.3.ab_ad_ab_p$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
4.3.b_ad_b_p$2$(not in LMFDB)
4.3.h_v_bl_cf$2$(not in LMFDB)
4.3.ae_j_at_bk$3$(not in LMFDB)
4.3.ab_ad_ab_p$3$(not in LMFDB)
4.3.ae_j_at_bk$6$(not in LMFDB)
4.3.e_j_t_bk$6$(not in LMFDB)