Invariants
| Base field: | $\F_{3}$ |
| Dimension: | $4$ |
| L-polynomial: | $1 - 2 x - x^{2} + 2 x^{3} + 4 x^{4} + 6 x^{5} - 9 x^{6} - 54 x^{7} + 81 x^{8}$ |
| Frobenius angles: | $\pm0.0787816009970$, $\pm0.204819271338$, $\pm0.587885065670$, $\pm0.871485938004$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 8.0.1768034304.4 |
| Galois group: | $D_4\times C_2$ |
| Jacobians: | $0$ |
| Isomorphism classes: | 24 |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $4$ |
| Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $28$ | $3472$ | $414736$ | $42886144$ | $4071046588$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $2$ | $4$ | $20$ | $80$ | $282$ | $802$ | $2046$ | $6816$ | $19532$ | $58804$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{3}}$.
Endomorphism algebra over $\F_{3}$| The endomorphism algebra of this simple isogeny class is 8.0.1768034304.4. |
| The base change of $A$ to $\F_{3^{3}}$ is 2.27.ae_ba 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.4672.2$)$ |
Base change
This is a primitive isogeny class.