Properties

Label 4.3.ab_d_ag_c
Base field $\F_{3}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{3}$
Dimension:  $4$
L-polynomial:  $1 - x + 3 x^{2} - 6 x^{3} + 2 x^{4} - 18 x^{5} + 27 x^{6} - 27 x^{7} + 81 x^{8}$
Frobenius angles:  $\pm0.0782059514466$, $\pm0.439377436916$, $\pm0.531209420686$, $\pm0.781097371409$
Angle rank:  $4$ (numerical)
Number field:  8.0.1415573168512.1
Galois group:  $C_2 \wr S_4$
Jacobians:  $0$
Isomorphism classes:  8

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $62$ $10292$ $393824$ $32028704$ $2828489042$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $15$ $18$ $59$ $193$ $822$ $2243$ $6387$ $20070$ $59135$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{3}$.

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 8.0.1415573168512.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.3.b_d_g_c$2$(not in LMFDB)