Invariants
| Base field: | $\F_{3}$ |
| Dimension: | $4$ |
| L-polynomial: | $1 - 9 x^{2} + 37 x^{4} - 81 x^{6} + 81 x^{8}$ |
| Frobenius angles: | $\pm0.0570956740464$, $\pm0.154696220929$, $\pm0.845303779071$, $\pm0.942904325954$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 8.0.1900960000.6 |
| Galois group: | $D_4\times C_2$ |
| Jacobians: | $0$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $4$ |
| Slopes: | $[0, 0, 0, 0, 1, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $29$ | $841$ | $551261$ | $36735721$ | $3489020624$ |
Point counts of the (virtual) curve
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $4$ | $-8$ | $28$ | $68$ | $244$ | $784$ | $2188$ | $6756$ | $19684$ | $59122$ |
Jacobians and polarizations
This isogeny class is principally polarizable, but does not contain a Jacobian.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{2}}$.
Endomorphism algebra over $\F_{3}$| The endomorphism algebra of this simple isogeny class is 8.0.1900960000.6. |
| The base change of $A$ to $\F_{3^{2}}$ is 2.9.aj_bl 2 and its endomorphism algebra is $\mathrm{M}_{2}($4.0.2725.1$)$ |
Base change
This is a primitive isogeny class.