Properties

Label 4.2.af_p_abg_bz
Base field $\F_{2}$
Dimension $4$
$p$-rank $4$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $4$
L-polynomial:  $( 1 - x + 2 x^{2} )( 1 - 4 x + 9 x^{2} - 15 x^{3} + 18 x^{4} - 16 x^{5} + 8 x^{6} )$
  $1 - 5 x + 15 x^{2} - 32 x^{3} + 51 x^{4} - 64 x^{5} + 60 x^{6} - 40 x^{7} + 16 x^{8}$
Frobenius angles:  $\pm0.0435981566527$, $\pm0.329312442367$, $\pm0.384973271919$, $\pm0.527830414776$
Angle rank:  $1$ (numerical)
Jacobians:  $0$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $4$
Slopes:  $[0, 0, 0, 0, 1, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2$ $568$ $5894$ $32944$ $563662$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $-2$ $10$ $13$ $6$ $13$ $43$ $103$ $262$ $580$ $1035$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{14}}$.

Endomorphism algebra over $\F_{2}$
The isogeny class factors as 1.2.ab $\times$ 3.2.ae_j_ap and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{2}$
The base change of $A$ to $\F_{2^{14}}$ is 1.16384.dj 4 and its endomorphism algebra is $\mathrm{M}_{4}($\(\Q(\sqrt{-7}) \)$)$
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.ad_h_ao_v$2$4.4.f_h_ao_acl
4.2.d_h_o_v$2$4.4.f_h_ao_acl
4.2.f_p_bg_bz$2$4.4.f_h_ao_acl

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
4.2.ad_h_ao_v$2$4.4.f_h_ao_acl
4.2.d_h_o_v$2$4.4.f_h_ao_acl
4.2.f_p_bg_bz$2$4.4.f_h_ao_acl
4.2.c_b_d_j$7$(not in LMFDB)
4.2.c_i_k_x$7$(not in LMFDB)
4.2.ae_h_ah_h$14$(not in LMFDB)
4.2.ae_o_abc_bx$14$(not in LMFDB)
4.2.ac_b_ad_j$14$(not in LMFDB)
4.2.ac_i_ak_x$14$(not in LMFDB)
4.2.a_g_a_r$14$(not in LMFDB)
4.2.e_h_h_h$14$(not in LMFDB)
4.2.e_o_bc_bx$14$(not in LMFDB)
4.2.ab_c_af_f$21$(not in LMFDB)
4.2.ac_c_c_ah$28$(not in LMFDB)
4.2.a_ag_a_r$28$(not in LMFDB)
4.2.a_a_a_ab$28$(not in LMFDB)
4.2.c_c_ac_ah$28$(not in LMFDB)
4.2.ad_g_aj_l$42$(not in LMFDB)
4.2.ac_ab_ac_n$42$(not in LMFDB)
4.2.ab_c_f_af$42$(not in LMFDB)
4.2.a_ad_a_f$42$(not in LMFDB)
4.2.b_c_af_af$42$(not in LMFDB)
4.2.b_c_f_f$42$(not in LMFDB)
4.2.c_ab_c_n$42$(not in LMFDB)
4.2.d_g_j_l$42$(not in LMFDB)
4.2.a_a_a_b$56$(not in LMFDB)
4.2.ab_ab_d_ab$70$(not in LMFDB)
4.2.b_ab_ad_ab$70$(not in LMFDB)
4.2.ab_ae_b_l$84$(not in LMFDB)
4.2.a_d_a_f$84$(not in LMFDB)
4.2.b_ae_ab_l$84$(not in LMFDB)