Properties

Label 3.7.d_v_bp
Base field $\F_{7}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $1 + 3 x + 21 x^{2} + 41 x^{3} + 147 x^{4} + 147 x^{5} + 343 x^{6}$
Frobenius angles:  $\pm0.467938051354$, $\pm0.539363585426$, $\pm0.683148769828$
Angle rank:  $3$ (numerical)
Number field:  6.0.98828343.1
Galois group:  $A_4\times C_2$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $703$ $225663$ $36077257$ $13209635031$ $4774393617913$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $11$ $83$ $305$ $2291$ $16901$ $118067$ $824744$ $5759363$ $40343651$ $282533243$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 hyperelliptic curve, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 6.0.98828343.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.ad_v_abp$2$(not in LMFDB)