Properties

Label 3.7.ap_ds_amx
Base Field $\F_{7}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $( 1 - 5 x + 7 x^{2} )^{3}$
Frobenius angles:  $\pm0.106147807505$, $\pm0.106147807505$, $\pm0.106147807505$
Angle rank:  $1$ (numerical)

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 27 59319 34012224 13464285939 4769628681537 1640360041721856 561105308109354399 192007660012577296875 65773842741647278356672 22547238253611059320055919

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -7 17 284 2333 16883 118508 827309 5777621 40391348 282574217

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7}$
The isogeny class factors as 1.7.af 3 and its endomorphism algebra is $\mathrm{M}_{3}($\(\Q(\sqrt{-3}) \)$)$
All geometric endomorphisms are defined over $\F_{7}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
3.7.af_ae_cd$2$(not in LMFDB)
3.7.f_ae_acd$2$(not in LMFDB)
3.7.p_ds_mx$2$(not in LMFDB)
3.7.aj_bk_adx$3$(not in LMFDB)
3.7.ag_g_q$3$(not in LMFDB)
3.7.ad_m_abv$3$(not in LMFDB)
3.7.a_a_au$3$(not in LMFDB)
3.7.d_ad_abm$3$(not in LMFDB)
3.7.d_y_br$3$(not in LMFDB)
3.7.g_be_dk$3$(not in LMFDB)
3.7.j_bt_fm$3$(not in LMFDB)
3.7.m_cr_iy$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.7.af_ae_cd$2$(not in LMFDB)
3.7.f_ae_acd$2$(not in LMFDB)
3.7.p_ds_mx$2$(not in LMFDB)
3.7.aj_bk_adx$3$(not in LMFDB)
3.7.ag_g_q$3$(not in LMFDB)
3.7.ad_m_abv$3$(not in LMFDB)
3.7.a_a_au$3$(not in LMFDB)
3.7.d_ad_abm$3$(not in LMFDB)
3.7.d_y_br$3$(not in LMFDB)
3.7.g_be_dk$3$(not in LMFDB)
3.7.j_bt_fm$3$(not in LMFDB)
3.7.m_cr_iy$3$(not in LMFDB)
3.7.af_s_acd$4$(not in LMFDB)
3.7.f_s_cd$4$(not in LMFDB)
3.7.ao_di_alk$6$(not in LMFDB)
3.7.an_cz_akc$6$(not in LMFDB)
3.7.am_cr_aiy$6$(not in LMFDB)
3.7.al_ce_agx$6$(not in LMFDB)
3.7.ak_by_age$6$(not in LMFDB)
3.7.aj_bt_afm$6$(not in LMFDB)
3.7.ai_bg_ado$6$(not in LMFDB)
3.7.ah_bd_ade$6$(not in LMFDB)
3.7.ah_bg_adz$6$(not in LMFDB)
3.7.ag_be_adk$6$(not in LMFDB)
3.7.af_f_k$6$(not in LMFDB)
3.7.af_u_acn$6$(not in LMFDB)
3.7.ae_ae_bs$6$(not in LMFDB)
3.7.ae_f_i$6$(not in LMFDB)
3.7.ae_u_aca$6$(not in LMFDB)
3.7.ad_ad_bm$6$(not in LMFDB)
3.7.ad_y_abr$6$(not in LMFDB)
3.7.ac_c_ai$6$(not in LMFDB)
3.7.ac_o_abg$6$(not in LMFDB)
3.7.ab_ae_l$6$(not in LMFDB)
3.7.ab_f_c$6$(not in LMFDB)
3.7.ab_u_an$6$(not in LMFDB)
3.7.a_a_u$6$(not in LMFDB)
3.7.b_ae_al$6$(not in LMFDB)
3.7.b_f_ac$6$(not in LMFDB)
3.7.b_u_n$6$(not in LMFDB)
3.7.c_c_i$6$(not in LMFDB)
3.7.c_o_bg$6$(not in LMFDB)
3.7.d_m_bv$6$(not in LMFDB)
3.7.e_ae_abs$6$(not in LMFDB)
3.7.e_f_ai$6$(not in LMFDB)
3.7.e_u_ca$6$(not in LMFDB)
3.7.f_f_ak$6$(not in LMFDB)
3.7.f_u_cn$6$(not in LMFDB)
3.7.g_g_aq$6$(not in LMFDB)
3.7.h_bd_de$6$(not in LMFDB)
3.7.h_bg_dz$6$(not in LMFDB)
3.7.i_bg_do$6$(not in LMFDB)
3.7.j_bk_dx$6$(not in LMFDB)
3.7.k_by_ge$6$(not in LMFDB)
3.7.l_ce_gx$6$(not in LMFDB)
3.7.n_cz_kc$6$(not in LMFDB)
3.7.o_di_lk$6$(not in LMFDB)
3.7.a_a_ar$9$(not in LMFDB)
3.7.a_a_bl$9$(not in LMFDB)
3.7.af_ag_cn$12$(not in LMFDB)
3.7.af_j_ak$12$(not in LMFDB)
3.7.ae_ag_ca$12$(not in LMFDB)
3.7.ae_j_ai$12$(not in LMFDB)
3.7.ae_s_abs$12$(not in LMFDB)
3.7.ab_ag_n$12$(not in LMFDB)
3.7.ab_j_ac$12$(not in LMFDB)
3.7.ab_s_al$12$(not in LMFDB)
3.7.b_ag_an$12$(not in LMFDB)
3.7.b_j_c$12$(not in LMFDB)
3.7.b_s_l$12$(not in LMFDB)
3.7.e_ag_aca$12$(not in LMFDB)
3.7.e_j_i$12$(not in LMFDB)
3.7.e_s_bs$12$(not in LMFDB)
3.7.f_ag_acn$12$(not in LMFDB)
3.7.f_j_k$12$(not in LMFDB)
3.7.a_a_abl$18$(not in LMFDB)
3.7.a_a_r$18$(not in LMFDB)