Properties

Label 3.7.ak_ca_agn
Base Field $\F_{7}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $1 - 10 x + 52 x^{2} - 169 x^{3} + 364 x^{4} - 490 x^{5} + 343 x^{6}$
Frobenius angles:  $\pm0.138002645708$, $\pm0.274328089770$, $\pm0.392516251949$
Angle rank:  $3$ (numerical)
Number field:  6.0.4770787.1
Galois group:  $A_4\times C_2$

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 91 130039 47095867 14364237979 4744758184621 1628188753462999 559440586548193987 191746078729927173907 65723224633291763731648 22539575190750992919962599

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 54 397 2490 16798 117633 824864 5769762 40360276 282478194

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 6.0.4770787.1.
All geometric endomorphisms are defined over $\F_{7}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.7.k_ca_gn$2$(not in LMFDB)