Properties

Label 3.7.aj_bp_aev
Base Field $\F_{7}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $1 - 9 x + 41 x^{2} - 125 x^{3} + 287 x^{4} - 441 x^{5} + 343 x^{6}$
Frobenius angles:  $\pm0.152985916969$, $\pm0.192087895429$, $\pm0.502942660276$
Angle rank:  $3$ (numerical)
Number field:  6.0.3627911.1
Galois group:  $A_4\times C_2$

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 97 120959 41046811 13891052519 4879565729107 1655693270684999 560247160804921792 191525435461048158791 65708266761304067998357 22539159970511717275802039

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 51 347 2411 17269 119607 826048 5763123 40351091 282472991

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 6.0.3627911.1.
All geometric endomorphisms are defined over $\F_{7}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.7.j_bp_ev$2$(not in LMFDB)