Properties

Label 3.7.ae_o_abe
Base field $\F_{7}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $1 - 4 x + 14 x^{2} - 30 x^{3} + 98 x^{4} - 196 x^{5} + 343 x^{6}$
Frobenius angles:  $\pm0.209171554878$, $\pm0.350275697141$, $\pm0.662651760947$
Angle rank:  $3$ (numerical)
Number field:  6.0.259687832.1
Galois group:  $S_4\times C_2$
Isomorphism classes:  48

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $226$ $155036$ $41876896$ $14800356704$ $4808804794546$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $4$ $62$ $358$ $2562$ $17024$ $116792$ $824240$ $5769026$ $40340410$ $282455742$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 6 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is 6.0.259687832.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.e_o_be$2$(not in LMFDB)