Properties

Label 3.7.a_a_bl
Base field $\F_{7}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple no
Primitive yes
Principally polarizable yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{7}$
Dimension:  $3$
L-polynomial:  $1 + 37 x^{3} + 343 x^{6}$
Frobenius angles:  $\pm0.328370029727$, $\pm0.338296636940$, $\pm0.995036696394$
Angle rank:  $1$ (numerical)
Number field:  \(\Q(\zeta_{9})\)
Galois group:  $C_6$
Isomorphism classes:  1
Cyclic group of points:    yes

This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $381$ $116967$ $55306341$ $13841056011$ $4747565749071$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $8$ $50$ $455$ $2402$ $16808$ $115601$ $823544$ $5764802$ $40391348$ $282475250$

Jacobians and polarizations

This isogeny class is principally polarizable and contains no Jacobian of a hyperelliptic curve, but it is unknown whether it contains a Jacobian of a non-hyperelliptic curve.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{7^{3}}$.

Endomorphism algebra over $\F_{7}$
The endomorphism algebra of this simple isogeny class is \(\Q(\zeta_{9})\).
Endomorphism algebra over $\overline{\F}_{7}$
The base change of $A$ to $\F_{7^{3}}$ is 1.343.bl 3 and its endomorphism algebra is $\mathrm{M}_{3}($\(\Q(\sqrt{-3}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.a_a_abl$2$(not in LMFDB)
3.7.ap_ds_amx$9$(not in LMFDB)
3.7.aj_bk_adx$9$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.7.a_a_abl$2$(not in LMFDB)
3.7.ap_ds_amx$9$(not in LMFDB)
3.7.aj_bk_adx$9$(not in LMFDB)
3.7.ag_g_q$9$(not in LMFDB)
3.7.ad_m_abv$9$(not in LMFDB)
3.7.a_a_au$9$(not in LMFDB)
3.7.a_a_ar$9$(not in LMFDB)
3.7.d_ad_abm$9$(not in LMFDB)
3.7.d_y_br$9$(not in LMFDB)
3.7.g_be_dk$9$(not in LMFDB)
3.7.j_bt_fm$9$(not in LMFDB)
3.7.m_cr_iy$9$(not in LMFDB)
3.7.ao_di_alk$18$(not in LMFDB)
3.7.an_cz_akc$18$(not in LMFDB)
3.7.am_cr_aiy$18$(not in LMFDB)
3.7.al_ce_agx$18$(not in LMFDB)
3.7.ak_by_age$18$(not in LMFDB)
3.7.aj_bt_afm$18$(not in LMFDB)
3.7.ai_bg_ado$18$(not in LMFDB)
3.7.ah_bd_ade$18$(not in LMFDB)
3.7.ah_bg_adz$18$(not in LMFDB)
3.7.ag_be_adk$18$(not in LMFDB)
3.7.af_ae_cd$18$(not in LMFDB)
3.7.af_f_k$18$(not in LMFDB)
3.7.af_u_acn$18$(not in LMFDB)
3.7.ae_ae_bs$18$(not in LMFDB)
3.7.ae_f_i$18$(not in LMFDB)
3.7.ae_u_aca$18$(not in LMFDB)
3.7.ad_ad_bm$18$(not in LMFDB)
3.7.ad_y_abr$18$(not in LMFDB)
3.7.ac_c_ai$18$(not in LMFDB)
3.7.ac_o_abg$18$(not in LMFDB)
3.7.ab_ae_l$18$(not in LMFDB)
3.7.ab_f_c$18$(not in LMFDB)
3.7.ab_u_an$18$(not in LMFDB)
3.7.a_a_r$18$(not in LMFDB)
3.7.a_a_u$18$(not in LMFDB)
3.7.b_ae_al$18$(not in LMFDB)
3.7.b_f_ac$18$(not in LMFDB)
3.7.b_u_n$18$(not in LMFDB)
3.7.c_c_i$18$(not in LMFDB)
3.7.c_o_bg$18$(not in LMFDB)
3.7.d_m_bv$18$(not in LMFDB)
3.7.e_ae_abs$18$(not in LMFDB)
3.7.e_f_ai$18$(not in LMFDB)
3.7.e_u_ca$18$(not in LMFDB)
3.7.f_ae_acd$18$(not in LMFDB)
3.7.f_f_ak$18$(not in LMFDB)
3.7.f_u_cn$18$(not in LMFDB)
3.7.g_g_aq$18$(not in LMFDB)
3.7.h_bd_de$18$(not in LMFDB)
3.7.h_bg_dz$18$(not in LMFDB)
3.7.i_bg_do$18$(not in LMFDB)
3.7.j_bk_dx$18$(not in LMFDB)
3.7.k_by_ge$18$(not in LMFDB)
3.7.l_ce_gx$18$(not in LMFDB)
3.7.n_cz_kc$18$(not in LMFDB)
3.7.o_di_lk$18$(not in LMFDB)
3.7.p_ds_mx$18$(not in LMFDB)
3.7.af_ag_cn$36$(not in LMFDB)
3.7.af_j_ak$36$(not in LMFDB)
3.7.af_s_acd$36$(not in LMFDB)
3.7.ae_ag_ca$36$(not in LMFDB)
3.7.ae_j_ai$36$(not in LMFDB)
3.7.ae_s_abs$36$(not in LMFDB)
3.7.ab_ag_n$36$(not in LMFDB)
3.7.ab_j_ac$36$(not in LMFDB)
3.7.ab_s_al$36$(not in LMFDB)
3.7.b_ag_an$36$(not in LMFDB)
3.7.b_j_c$36$(not in LMFDB)
3.7.b_s_l$36$(not in LMFDB)
3.7.e_ag_aca$36$(not in LMFDB)
3.7.e_j_i$36$(not in LMFDB)
3.7.e_s_bs$36$(not in LMFDB)
3.7.f_ag_acn$36$(not in LMFDB)
3.7.f_j_k$36$(not in LMFDB)
3.7.f_s_cd$36$(not in LMFDB)