Properties

Label 3.5.f_s_bw
Base field $\F_{5}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 + 5 x + 18 x^{2} + 48 x^{3} + 90 x^{4} + 125 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.472107185344$, $\pm0.588477773868$, $\pm0.881196922000$
Angle rank:  $3$ (numerical)
Number field:  6.0.53670484.1
Galois group:  $S_4\times C_2$
Jacobians:  $5$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $412$ $23072$ $1958236$ $217522816$ $30817540672$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $11$ $37$ $125$ $553$ $3156$ $15973$ $77445$ $391665$ $1950083$ $9768972$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 5 curves (of which 2 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5}$.

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.53670484.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.5.af_s_abw$2$3.25.l_y_acm