Properties

Label 3.5.ai_bi_adp
Base Field $\F_{5}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 - 8 x + 34 x^{2} - 93 x^{3} + 170 x^{4} - 200 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.101435245160$, $\pm0.306436956418$, $\pm0.413672014132$
Angle rank:  $3$ (numerical)
Number field:  6.0.1178891.1
Galois group:  $A_4\times C_2$
Jacobians:  0

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 29 18299 2375477 244639331 29396710169 3778792413227 479093711198173 59842076388306563 7461702113779025216 931959983641771080779

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 30 151 626 3008 15477 78496 392178 1956040 9772310

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.1178891.1.
All geometric endomorphisms are defined over $\F_{5}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.5.i_bi_dp$2$3.25.e_i_abn