Properties

Label 3.5.ah_bb_acv
Base Field $\F_{5}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 - 7 x + 27 x^{2} - 73 x^{3} + 135 x^{4} - 175 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.0229621162481$, $\pm0.333082169302$, $\pm0.478604549684$
Angle rank:  $3$ (numerical)
Number field:  6.0.3194271.1
Galois group:  $S_4\times C_2$
Jacobians:  0

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 33 17919 2016333 217482903 28658222373 3754305180351 473689314069312 59375689591896711 7446683321665991073 931643554087041402519

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 31 131 555 2929 15379 77608 389123 1952105 9768991

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.3194271.1.
All geometric endomorphisms are defined over $\F_{5}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.5.h_bb_cv$2$3.25.f_ax_ajf