Properties

Label 3.5.ah_bb_act
Base Field $\F_{5}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 - 7 x + 27 x^{2} - 71 x^{3} + 135 x^{4} - 175 x^{5} + 125 x^{6}$
Frobenius angles:  $\pm0.111887224672$, $\pm0.292466693033$, $\pm0.493752400559$
Angle rank:  $3$ (numerical)
Number field:  6.0.39563351.1
Galois group:  $S_4\times C_2$
Jacobians:  0

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 35 18935 2147495 238145495 30771328175 3862967693375 476579628320320 59504599663620615 7463682671683774235 933042916592115847175

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 31 137 611 3149 15823 78084 389971 1956557 9783651

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.39563351.1.
All geometric endomorphisms are defined over $\F_{5}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.5.h_bb_ct$2$3.25.f_f_bx