Properties

Label 3.5.a_h_ae
Base field $\F_{5}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{5}$
Dimension:  $3$
L-polynomial:  $1 + 7 x^{2} - 4 x^{3} + 35 x^{4} + 125 x^{6}$
Frobenius angles:  $\pm0.260976308728$, $\pm0.536902371779$, $\pm0.691755156756$
Angle rank:  $3$ (numerical)
Number field:  6.0.29215664.3
Galois group:  $S_4\times C_2$
Jacobians:  $11$
Isomorphism classes:  28

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $164$ $28208$ $1769396$ $260416256$ $31932984644$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $6$ $40$ $114$ $668$ $3266$ $15544$ $77734$ $388540$ $1952142$ $9776280$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 11 curves (of which 5 are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{5}$.

Endomorphism algebra over $\F_{5}$
The endomorphism algebra of this simple isogeny class is 6.0.29215664.3.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.5.a_h_e$2$3.25.o_ep_bbw