Properties

Label 3.4.ad_d_c
Base field $\F_{2^{2}}$
Dimension $3$
$p$-rank $2$
Ordinary no
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2^{2}}$
Dimension:  $3$
L-polynomial:  $1 - 3 x + 3 x^{2} + 2 x^{3} + 12 x^{4} - 48 x^{5} + 64 x^{6}$
Frobenius angles:  $\pm0.177291589221$, $\pm0.277218038530$, $\pm0.766593115976$
Angle rank:  $2$ (numerical)
Number field:  6.0.2101707.2
Galois group:  $D_{6}$
Jacobians:  $4$
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, not ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

$p$-rank:  $2$
Slopes:  $[0, 0, 1/2, 1/2, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $31$ $3999$ $291772$ $22894275$ $1101883561$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $14$ $71$ $338$ $1052$ $4199$ $16424$ $64802$ $262799$ $1047554$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 4 curves (of which 0 are hyperelliptic):

where $a$ is a root of the Conway polynomial.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{2}}$.

Endomorphism algebra over $\F_{2^{2}}$
The endomorphism algebra of this simple isogeny class is 6.0.2101707.2.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.4.d_d_ac$2$3.16.ad_bt_ado
3.4.a_ad_c$3$(not in LMFDB)
3.4.d_j_u$3$(not in LMFDB)

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.4.d_d_ac$2$3.16.ad_bt_ado
3.4.a_ad_c$3$(not in LMFDB)
3.4.d_j_u$3$(not in LMFDB)
3.4.ad_j_au$6$(not in LMFDB)
3.4.a_ad_ac$6$(not in LMFDB)