Properties

Label 3.3.ag_v_abs
Base Field $\F_{3}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
L-polynomial:  $( 1 - 2 x + 3 x^{2} )^{3}$
Frobenius angles:  $\pm0.304086723985$, $\pm0.304086723985$, $\pm0.304086723985$
Angle rank:  $1$ (numerical)
Jacobians:  0

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 8 1728 54872 884736 14172488 320013504 9287485208 278189309952 7849750559624 210984921816768

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -2 16 58 124 238 592 1930 6460 20254 60496

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ac 3 and its endomorphism algebra is $\mathrm{M}_{3}($\(\Q(\sqrt{-2}) \)$)$
All geometric endomorphisms are defined over $\F_{3}$.

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
3.3.ac_f_ae$2$3.9.g_bn_em
3.3.c_f_e$2$3.9.g_bn_em
3.3.g_v_bs$2$3.9.g_bn_em
3.3.a_a_k$3$(not in LMFDB)
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.3.ac_f_ae$2$3.9.g_bn_em
3.3.c_f_e$2$3.9.g_bn_em
3.3.g_v_bs$2$3.9.g_bn_em
3.3.a_a_k$3$(not in LMFDB)
3.3.ac_b_e$4$(not in LMFDB)
3.3.c_b_ae$4$(not in LMFDB)
3.3.ae_i_ao$6$(not in LMFDB)
3.3.a_a_ak$6$(not in LMFDB)
3.3.e_i_o$6$(not in LMFDB)
3.3.ag_t_abo$8$(not in LMFDB)
3.3.ac_d_ai$8$(not in LMFDB)
3.3.c_d_i$8$(not in LMFDB)
3.3.g_t_bo$8$(not in LMFDB)