Properties

Label 3.3.af_p_abg
Base Field $\F_{3}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
L-polynomial:  $( 1 - x + 3 x^{2} )( 1 - 4 x + 8 x^{2} - 12 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.0540867239847$, $\pm0.406785250661$, $\pm0.445913276015$
Angle rank:  $2$ (numerical)
Jacobians:  0

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 6 1020 22536 346800 10497066 383112000 11123580558 284453683200 7461772521912 204245087135100

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ -1 15 32 47 169 720 2323 6607 19256 58575

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ab $\times$ 2.3.ae_i and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{3}$
The base change of $A$ to $\F_{3^{4}}$ is 1.81.ao 2 $\times$ 1.81.ah. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{3^{4}}$.
Remainder of endomorphism lattice by field

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.
TwistExtension DegreeCommon base change
3.3.ad_h_aq$2$3.9.f_af_acs
3.3.d_h_q$2$3.9.f_af_acs
3.3.f_p_bg$2$3.9.f_af_acs
Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.3.ad_h_aq$2$3.9.f_af_acs
3.3.d_h_q$2$3.9.f_af_acs
3.3.f_p_bg$2$3.9.f_af_acs
3.3.ad_h_aq$4$(not in LMFDB)
3.3.af_r_abi$8$(not in LMFDB)
3.3.ad_j_ao$8$(not in LMFDB)
3.3.ab_b_c$8$(not in LMFDB)
3.3.ab_f_ac$8$(not in LMFDB)
3.3.b_b_ac$8$(not in LMFDB)
3.3.b_f_c$8$(not in LMFDB)
3.3.d_j_o$8$(not in LMFDB)
3.3.f_r_bi$8$(not in LMFDB)
3.3.ad_g_an$24$(not in LMFDB)
3.3.ab_c_al$24$(not in LMFDB)
3.3.b_c_l$24$(not in LMFDB)
3.3.d_g_n$24$(not in LMFDB)