# Properties

 Label 3.3.ae_m_aw Base Field $\F_{3}$ Dimension $3$ Ordinary Yes $p$-rank $3$ Principally polarizable Yes Contains a Jacobian No

## Invariants

 Base field: $\F_{3}$ Dimension: $3$ L-polynomial: $( 1 - 2 x + 3 x^{2} )( 1 - 2 x + 5 x^{2} - 6 x^{3} + 9 x^{4} )$ Frobenius angles: $\pm0.254551732336$, $\pm0.304086723985$, $\pm0.538152604671$ Angle rank: $3$ (numerical) Jacobians: 0

This isogeny class is not simple.

## Newton polygon

This isogeny class is ordinary.

 $p$-rank: $3$ Slopes: $[0, 0, 0, 1, 1, 1]$

## Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

 $r$ 1 2 3 4 5 6 7 8 9 10 $A(\F_{q^r})$ 14 1932 32984 633696 16738414 382350528 9420506074 270311900544 7729266422024 208447788052812

 $r$ 1 2 3 4 5 6 7 8 9 10 $C(\F_{q^r})$ 0 18 42 98 280 720 1960 6274 19950 59778

## Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
 The isogeny class factors as 1.3.ac $\times$ 2.3.ac_f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{3}$.

## Base change

This is a primitive isogeny class.

## Twists

Below is a list of all twists of this isogeny class.
 Twist Extension Degree Common base change 3.3.a_e_ac $2$ 3.9.i_bo_fq 3.3.a_e_c $2$ 3.9.i_bo_fq 3.3.e_m_w $2$ 3.9.i_bo_fq