Properties

Label 3.3.ae_l_ax
Base Field $\F_{3}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian No

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
L-polynomial:  $( 1 - x + 3 x^{2} )( 1 - 3 x + 5 x^{2} - 9 x^{3} + 9 x^{4} )$
Frobenius angles:  $\pm0.0975263560046$, $\pm0.406785250661$, $\pm0.527857038681$
Angle rank:  $3$ (numerical)
Jacobians:  0

This isogeny class is not simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but does not contain a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 9 1215 19764 370575 13301424 416229840 10850949279 287364977775 7751691822564 207007401427200

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 16 27 52 225 781 2268 6676 20007 59371

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The isogeny class factors as 1.3.ab $\times$ 2.3.ad_f and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
All geometric endomorphisms are defined over $\F_{3}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.3.ac_f_an$2$3.9.g_d_abl
3.3.c_f_n$2$3.9.g_d_abl
3.3.e_l_x$2$3.9.g_d_abl