Properties

Label 3.3.ae_l_aw
Base Field $\F_{3}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
L-polynomial:  $1 - 4 x + 11 x^{2} - 22 x^{3} + 33 x^{4} - 36 x^{5} + 27 x^{6}$
Frobenius angles:  $\pm0.132091637252$, $\pm0.376445424065$, $\pm0.544359499442$
Angle rank:  $3$ (numerical)
Number field:  6.0.5169344.1
Galois group:  $S_4\times C_2$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 10 1340 22030 455600 14700050 410330780 10709109190 293340793600 7859863377970 205846769956700

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 16 30 68 250 772 2240 6812 20280 59036

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 6.0.5169344.1.
All geometric endomorphisms are defined over $\F_{3}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.3.e_l_w$2$3.9.g_l_i