Properties

Label 3.3.ae_g_ah
Base Field $\F_{3}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{3}$
Dimension:  $3$
L-polynomial:  $1 - 4 x + 6 x^{2} - 7 x^{3} + 18 x^{4} - 36 x^{5} + 27 x^{6}$
Frobenius angles:  $\pm0.0452398905210$, $\pm0.239335307006$, $\pm0.691360448188$
Angle rank:  $3$ (numerical)
Number field:  6.0.2461019.1
Galois group:  $D_{6}$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 5 495 11465 636075 14736775 350725815 10376297545 272317065075 7417764013760 206718770265975

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 0 6 15 98 250 657 2170 6322 19140 59286

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{3}$
The endomorphism algebra of this simple isogeny class is 6.0.2461019.1.
All geometric endomorphisms are defined over $\F_{3}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.3.e_g_h$2$3.9.ae_q_acp