Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 + 8 x + 69 x^{2} + 352 x^{3} + 1587 x^{4} + 4232 x^{5} + 12167 x^{6}$ |
| Frobenius angles: | $\pm0.456360267722$, $\pm0.552623248094$, $\pm0.798456914305$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.54187712.1 |
| Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $3$ |
| Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $18416$ | $170016512$ | $1788470042576$ | $21846517893349376$ | $266446692104952067376$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $32$ | $604$ | $12080$ | $278972$ | $6431792$ | $148085020$ | $3404781888$ | $78310398844$ | $1801155041408$ | $41426499851484$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 158 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^7+3 x^6+9 x^5+x^4+20 x^3+13 x^2+17 x+16$
- $y^2=22 x^7+17 x^6+11 x^5+2 x^4+11 x^3+2 x^2+12 x+8$
- $y^2=x^7+11 x^6+21 x^5+x^4+12 x^3+17 x^2+5 x+9$
- $y^2=22 x^7+12 x^6+22 x^5+21 x^4+9 x^3+13 x^2+15 x+13$
- $y^2=x^7+2 x^6+6 x^5+20 x^4+17 x^3+21 x^2+22 x+6$
- $y^2=x^8+3 x^7+14 x^6+3 x^5+10 x^4+20 x^3+14 x^2+6 x+1$
- $y^2=22 x^7+19 x^6+16 x^5+7 x^4+12 x^3+16 x^2+21 x+4$
- $y^2=22 x^7+20 x^6+22 x^5+13 x^4+12 x^3+19 x^2+7$
- $y^2=22 x^8+3 x^7+6 x^6+4 x^5+13 x^4+22 x^3+3 x^2+6 x+15$
- $y^2=x^8+8 x^7+5 x^6+21 x^5+x^4+8 x^3+5 x^2+21 x$
- $y^2=x^8+14 x^7+20 x^6+2 x^5+9 x^4+2 x^3+8 x^2+11 x+12$
- $y^2=x^8+3 x^7+19 x^6+5 x^5+13 x^4+22 x^3+13 x+11$
- $y^2=x^7+8 x^6+21 x^5+7 x^4+13 x^3+12 x^2+13 x+12$
- $y^2=x^8+3 x^7+17 x^6+15 x^5+9 x^4+11 x^3+3 x+5$
- $y^2=22 x^8+8 x^7+4 x^6+8 x^5+7 x^4+3 x^3+18 x^2+15 x+6$
- $y^2=x^8+10 x^7+19 x^6+22 x^5+20 x^4+19 x^3+17 x^2+21 x+4$
- $y^2=x^8+6 x^7+17 x^6+17 x^5+13 x^4+6 x^3+17 x^2+17 x+12$
- $y^2=x^8+3 x^7+13 x^6+x^5+19 x^4+3 x^3+13 x^2+x+18$
- $y^2=x^8+5 x^7+10 x^6+18 x^5+22 x^4+5 x^3+10 x^2+18 x+21$
- $y^2=22 x^8+21 x^7+16 x^6+x^5+12 x^4+21 x^3+16 x^2+x+13$
- and 138 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is 6.0.54187712.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.23.ai_cr_ano | $2$ | (not in LMFDB) |