Properties

Label 3.23.i_cr_no
Base field $\F_{23}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $3$
L-polynomial:  $1 + 8 x + 69 x^{2} + 352 x^{3} + 1587 x^{4} + 4232 x^{5} + 12167 x^{6}$
Frobenius angles:  $\pm0.456360267722$, $\pm0.552623248094$, $\pm0.798456914305$
Angle rank:  $3$ (numerical)
Number field:  6.0.54187712.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $18416$ $170016512$ $1788470042576$ $21846517893349376$ $266446692104952067376$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $32$ $604$ $12080$ $278972$ $6431792$ $148085020$ $3404781888$ $78310398844$ $1801155041408$ $41426499851484$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 158 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 6.0.54187712.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.23.ai_cr_ano$2$(not in LMFDB)