Properties

Label 3.23.c_bp_eu
Base field $\F_{23}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $3$
L-polynomial:  $1 + 2 x + 41 x^{2} + 124 x^{3} + 943 x^{4} + 1058 x^{5} + 12167 x^{6}$
Frobenius angles:  $\pm0.383330675754$, $\pm0.454448145848$, $\pm0.751082583272$
Angle rank:  $3$ (numerical)
Number field:  6.0.18156460784.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $14336$ $171573248$ $1821111928832$ $21919133037756416$ $266143593680516478976$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $26$ $608$ $12302$ $279900$ $6424466$ $148037984$ $3405067846$ $78310742012$ $1801152459242$ $41426501421408$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 287 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 6.0.18156460784.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.23.ac_bp_aeu$2$(not in LMFDB)