Invariants
| Base field: | $\F_{23}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 + 2 x + 41 x^{2} + 124 x^{3} + 943 x^{4} + 1058 x^{5} + 12167 x^{6}$ |
| Frobenius angles: | $\pm0.383330675754$, $\pm0.454448145848$, $\pm0.751082583272$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.18156460784.1 |
| Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $3$ |
| Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $14336$ | $171573248$ | $1821111928832$ | $21919133037756416$ | $266143593680516478976$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $26$ | $608$ | $12302$ | $279900$ | $6424466$ | $148037984$ | $3405067846$ | $78310742012$ | $1801152459242$ | $41426501421408$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 287 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=x^7+20 x^6+19 x^5+8 x^4+6 x^3+x^2+17 x$
- $y^2=22 x^7+3 x^6+7 x^4+16 x^3+8 x^2+4 x+9$
- $y^2=x^7+9 x^6+19 x^5+2 x^4+18 x^3+11 x^2+2 x+1$
- $y^2=x^7+19 x^6+x^5+22 x^4+x^3+12 x^2+3 x+19$
- $y^2=22 x^8+8 x^7+18 x^6+7 x^5+22 x^4+7 x^3+3 x^2+11 x+21$
- $y^2=x^7+9 x^6+8 x^5+9 x^4+16 x^3+13 x^2+3 x+10$
- $y^2=x^7+7 x^6+22 x^5+17 x^4+12 x^3+18 x^2+19 x+19$
- $y^2=x^7+6 x^6+21 x^5+21 x^4+9 x^3+15 x^2+18 x+3$
- $y^2=x^7+7 x^6+22 x^5+8 x^4+21 x^3+14 x^2+14 x+21$
- $y^2=x^7+8 x^6+8 x^5+22 x^4+16 x^3+10 x^2+3 x+5$
- $y^2=22 x^7+14 x^6+9 x^5+21 x^4+20 x^3+22 x^2+17 x+1$
- $y^2=22 x^7+20 x^6+8 x^5+19 x^4+9 x^3+12 x^2+11 x+5$
- $y^2=x^7+3 x^6+20 x^5+18 x^4+7 x^3+18 x^2+15 x+3$
- $y^2=x^8+3 x^7+19 x^6+15 x^4+22 x^3+6 x^2+14 x+12$
- $y^2=22 x^8+22 x^7+2 x^6+17 x^4+17 x^3+20 x^2+8 x+7$
- $y^2=x^8+3 x^7+17 x^6+20 x^5+17 x^4+13 x^3+5 x^2+11 x+20$
- $y^2=x^8+2 x^7+8 x^6+15 x^5+17 x^4+17 x^3+13 x^2+22 x+16$
- $y^2=22 x^8+19 x^7+4 x^6+x^5+6 x^4+7 x^3+13 x^2+10 x+3$
- $y^2=22 x^8+16 x^7+15 x^6+7 x^5+11 x^4+14 x^3+4 x^2+17 x+12$
- $y^2=22 x^8+22 x^7+3 x^6+8 x^5+18 x^4+18 x^3+18 x^2+13 x+2$
- and 267 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{23}$.
Endomorphism algebra over $\F_{23}$| The endomorphism algebra of this simple isogeny class is 6.0.18156460784.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.23.ac_bp_aeu | $2$ | (not in LMFDB) |