Properties

Label 3.23.aw_ir_acan
Base Field $\F_{23}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes

Learn more about

Invariants

Base field:  $\F_{23}$
Dimension:  $3$
L-polynomial:  $1 - 22 x + 225 x^{2} - 1365 x^{3} + 5175 x^{4} - 11638 x^{5} + 12167 x^{6}$
Frobenius angles:  $\pm0.0651622826372$, $\pm0.199262186058$, $\pm0.331801443904$
Angle rank:  $3$ (numerical)
Number field:  6.0.1812258679.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class is principally polarizable, but it is unknown whether it contains a Jacobian.

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 4543 138983999 1816985370508 21967488578046319 266635359771532381168 3243874500256400201904944 39471121664207816317658420189 480251594036143765878840599355631 5843215144968184778878353052784930236 71094348788475867567602845815142109598464

Point counts of the (virtual) curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 2 496 12275 280516 6436347 148023277 3404785554 78311120628 1801153925099 41426511212091

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 6.0.1812258679.1.
All geometric endomorphisms are defined over $\F_{23}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.23.w_ir_can$2$(not in LMFDB)