Properties

Label 3.23.ah_cz_amc
Base field $\F_{23}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $3$
L-polynomial:  $1 - 7 x + 77 x^{2} - 314 x^{3} + 1771 x^{4} - 3703 x^{5} + 12167 x^{6}$
Frobenius angles:  $\pm0.319926650127$, $\pm0.416585689026$, $\pm0.520795862164$
Angle rank:  $3$ (numerical)
Number field:  6.0.41578490624.1
Galois group:  $S_4\times C_2$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9992$ $180255680$ $1850971037600$ $21846195291008000$ $266434961211355131352$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $17$ $635$ $12500$ $278967$ $6431507$ $148034780$ $3404801389$ $78310885007$ $1801154750300$ $41426520702675$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 17 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 6.0.41578490624.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.23.h_cz_mc$2$(not in LMFDB)