Properties

Label 3.23.ag_bt_agy
Base field $\F_{23}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{23}$
Dimension:  $3$
L-polynomial:  $1 - 6 x + 45 x^{2} - 180 x^{3} + 1035 x^{4} - 3174 x^{5} + 12167 x^{6}$
Frobenius angles:  $\pm0.214601025544$, $\pm0.401888698351$, $\pm0.651806082757$
Angle rank:  $3$ (numerical)
Number field:  6.0.5241632472.1
Galois group:  $S_4\times C_2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $9888$ $164219904$ $1809070579296$ $21989533864034304$ $266774139992615503008$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $18$ $584$ $12222$ $280796$ $6439698$ $148020872$ $3404944638$ $78311506940$ $1801146624210$ $41426487551624$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 554 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{23}$.

Endomorphism algebra over $\F_{23}$
The endomorphism algebra of this simple isogeny class is 6.0.5241632472.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.23.g_bt_gy$2$(not in LMFDB)