Properties

Label 3.2.ac_a_d
Base Field $\F_{2}$
Dimension $3$
Ordinary Yes
$p$-rank $3$
Principally polarizable Yes
Contains a Jacobian Yes

Learn more about

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
L-polynomial:  $1 - 2 x + 3 x^{3} - 8 x^{5} + 8 x^{6}$
Frobenius angles:  $\pm0.0889496890695$, $\pm0.297004294965$, $\pm0.823081333977$
Angle rank:  $3$ (numerical)
Number field:  6.0.1539727.2
Galois group:  $D_{6}$
Jacobians:  1

This isogeny class is simple and geometrically simple.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

This isogeny class contains the Jacobians of 1 curves, and hence is principally polarizable:

Point counts of the abelian variety

$r$ 1 2 3 4 5 6 7 8 9 10
$A(\F_{q^r})$ 2 32 632 6976 23342 283136 1655194 17984128 155066888 1154401952

Point counts of the curve

$r$ 1 2 3 4 5 6 7 8 9 10
$C(\F_{q^r})$ 1 1 10 25 21 70 99 273 586 1101

Decomposition and endomorphism algebra

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 6.0.1539727.2.
All geometric endomorphisms are defined over $\F_{2}$.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.
TwistExtension DegreeCommon base change
3.2.c_a_ad$2$3.4.ae_m_az