Properties

Label 3.2.ab_f_ad
Base field $\F_{2}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple no
Geometrically simple no
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
L-polynomial:  $( 1 + x + 2 x^{2} )( 1 - x + 2 x^{2} )^{2}$
  $1 - x + 5 x^{2} - 3 x^{3} + 10 x^{4} - 4 x^{5} + 8 x^{6}$
Frobenius angles:  $\pm0.384973271919$, $\pm0.384973271919$, $\pm0.615026728081$
Angle rank:  $1$ (numerical)
Jacobians:  $0$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $16$ $512$ $784$ $4096$ $21296$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $14$ $14$ $14$ $22$ $38$ $142$ $350$ $518$ $854$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2^{2}}$.

Endomorphism algebra over $\F_{2}$
The isogeny class factors as 1.2.ab 2 $\times$ 1.2.b and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is:
Endomorphism algebra over $\overline{\F}_{2}$
The base change of $A$ to $\F_{2^{2}}$ is 1.4.d 3 and its endomorphism algebra is $\mathrm{M}_{3}($\(\Q(\sqrt{-7}) \)$)$

Base change

This is a primitive isogeny class.

Twists

Below are some of the twists of this isogeny class.

TwistExtension degreeCommon base change
3.2.ad_j_an$2$3.4.j_bn_dv
3.2.b_f_d$2$3.4.j_bn_dv
3.2.d_j_n$2$3.4.j_bn_dv
3.2.c_c_d$3$3.8.f_ab_abt

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.2.ad_j_an$2$3.4.j_bn_dv
3.2.b_f_d$2$3.4.j_bn_dv
3.2.d_j_n$2$3.4.j_bn_dv
3.2.c_c_d$3$3.8.f_ab_abt
3.2.ab_ab_d$4$3.16.ad_bz_adt
3.2.b_ab_ad$4$3.16.ad_bz_adt
3.2.ac_c_ad$6$(not in LMFDB)
3.2.a_a_af$6$(not in LMFDB)
3.2.a_a_f$6$(not in LMFDB)
3.2.ae_j_ap$14$(not in LMFDB)
3.2.ad_c_b$14$(not in LMFDB)
3.2.d_c_ab$14$(not in LMFDB)
3.2.e_j_p$14$(not in LMFDB)