Properties

Label 3.2.ab_ab_f
Base field $\F_{2}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
L-polynomial:  $1 - x - x^{2} + 5 x^{3} - 2 x^{4} - 4 x^{5} + 8 x^{6}$
Frobenius angles:  $\pm0.188077943068$, $\pm0.335703956083$, $\pm0.922415663513$
Angle rank:  $3$ (numerical)
Number field:  6.0.1142512.1
Galois group:  $S_4\times C_2$
Jacobians:  $1$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $6$ $36$ $1962$ $5904$ $43926$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $2$ $2$ $20$ $22$ $42$ $62$ $128$ $286$ $506$ $1042$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobian of 1 curve (which is not hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 6.0.1142512.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.2.b_ab_af$2$3.4.ad_h_an