Properties

Label 3.2.a_d_b
Base field $\F_{2}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian no

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{2}$
Dimension:  $3$
L-polynomial:  $1 + 3 x^{2} + x^{3} + 6 x^{4} + 8 x^{6}$
Frobenius angles:  $\pm0.317790270383$, $\pm0.460816543721$, $\pm0.731339684822$
Angle rank:  $3$ (numerical)
Number field:  6.0.1305639.1
Galois group:  $A_4\times C_2$
Jacobians:  $0$
Isomorphism classes:  1
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $19$ $323$ $703$ $5491$ $21869$

Point counts of the (virtual) curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $3$ $11$ $12$ $23$ $18$ $56$ $150$ $215$ $525$ $1136$

Jacobians and polarizations

This isogeny class is principally polarizable, but does not contain a Jacobian.

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{2}$.

Endomorphism algebra over $\F_{2}$
The endomorphism algebra of this simple isogeny class is 6.0.1305639.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.2.a_d_ab$2$3.4.g_v_bz