Invariants
| Base field: | $\F_{17}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 + 4 x + 27 x^{2} + 48 x^{3} + 459 x^{4} + 1156 x^{5} + 4913 x^{6}$ |
| Frobenius angles: | $\pm0.301982479360$, $\pm0.633920986978$, $\pm0.729182814090$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.5377606528.1 |
| Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $3$ |
| Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6608$ | $27700736$ | $115772959568$ | $590218030710784$ | $2864288701718565968$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $328$ | $4798$ | $84604$ | $1420782$ | $24117640$ | $410331174$ | $6975731964$ | $118588032550$ | $2015997088008$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 126 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=3 x^7+3 x^6+15 x^5+3 x^4+5 x^3+8 x^2+10 x+4$
- $y^2=x^7+3 x^6+8 x^5+10 x^3+14 x+13$
- $y^2=x^8+2 x^7+16 x^6+15 x^5+14 x^4+12 x^3+4 x^2+12 x+4$
- $y^2=x^8+4 x^7+x^6+6 x^5+16 x^4+16 x^3+13 x^2+9 x+1$
- $y^2=3 x^8+9 x^6+12 x^5+14 x^4+11 x^3+7 x^2+6 x+11$
- $y^2=x^8+4 x^7+8 x^6+5 x^5+3 x^4+9 x^3+16 x^2+3 x+6$
- $y^2=3 x^8+6 x^7+9 x^6+5 x^5+5 x^4+2 x^3+15 x^2+3 x+16$
- $y^2=3 x^8+3 x^7+4 x^6+10 x^5+4 x^4+4 x^3+x^2+x+8$
- $y^2=x^8+6 x^6+8 x^5+7 x^4+13 x^3+9 x^2+4 x+7$
- $y^2=x^8+6 x^7+16 x^6+9 x^5+11 x^4+11 x^3+9 x^2+x+11$
- $y^2=x^8+10 x^7+7 x^6+13 x^5+10 x^4+3 x^3+8 x^2+4 x+4$
- $y^2=3 x^8+3 x^7+11 x^6+16 x^5+16 x^4+x^3+16 x^2+x+7$
- $y^2=x^8+9 x^7+x^5+14 x^4+16 x^3+5 x^2+14 x+15$
- $y^2=3 x^8+12 x^7+16 x^6+15 x^5+3 x^4+8 x^3+16 x^2+6 x+4$
- $y^2=3 x^8+x^7+12 x^6+x^5+9 x^4+14 x^3+13 x^2+7 x+8$
- $y^2=3 x^8+4 x^7+2 x^6+8 x^5+8 x^4+14 x^3+4 x^2+5 x+2$
- $y^2=x^8+10 x^7+11 x^6+10 x^4+11 x^3+13 x^2+11 x+14$
- $y^2=x^8+16 x^7+2 x^6+16 x^3+3 x^2+11 x+3$
- $y^2=3 x^7+16 x^6+5 x^5+11 x^3+16 x^2+12 x+11$
- $y^2=x^7+3 x^5+7 x^4+6 x^3+7 x^2+13$
- and 106 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{17}$.
Endomorphism algebra over $\F_{17}$| The endomorphism algebra of this simple isogeny class is 6.0.5377606528.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.17.ae_bb_abw | $2$ | (not in LMFDB) |