Properties

Label 3.17.ac_p_aci
Base field $\F_{17}$
Dimension $3$
$p$-rank $3$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{17}$
Dimension:  $3$
L-polynomial:  $1 - 2 x + 15 x^{2} - 60 x^{3} + 255 x^{4} - 578 x^{5} + 4913 x^{6}$
Frobenius angles:  $\pm0.178160950109$, $\pm0.491513295512$, $\pm0.717573795162$
Angle rank:  $3$ (numerical)
Number field:  6.0.1997632.1
Galois group:  $A_4\times C_2$
Cyclic group of points:    no
Non-cyclic primes:   $2$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $3$
Slopes:  $[0, 0, 0, 1, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4544$ $26464256$ $116278565312$ $584806705659904$ $2865002756729476544$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $16$ $316$ $4816$ $83836$ $1421136$ $24151228$ $410415504$ $6975518460$ $118587402640$ $2015996860476$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 682 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{17}$.

Endomorphism algebra over $\F_{17}$
The endomorphism algebra of this simple isogeny class is 6.0.1997632.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
3.17.c_p_ci$2$(not in LMFDB)