Invariants
| Base field: | $\F_{13}$ |
| Dimension: | $3$ |
| L-polynomial: | $1 - 2 x + 19 x^{2} - 60 x^{3} + 247 x^{4} - 338 x^{5} + 2197 x^{6}$ |
| Frobenius angles: | $\pm0.207502090325$, $\pm0.518616831924$, $\pm0.651841336648$ |
| Angle rank: | $3$ (numerical) |
| Number field: | 6.0.25951344.1 |
| Galois group: | $S_4\times C_2$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $3$ |
| Slopes: | $[0, 0, 0, 1, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $2064$ | $5911296$ | $10256422608$ | $23358036885504$ | $51517536226654224$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $12$ | $204$ | $2124$ | $28636$ | $373692$ | $4829868$ | $62747676$ | $815696828$ | $10604226348$ | $137858431884$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 138 hyperelliptic curves, but it is unknown how many Jacobians of non-hyperelliptic curves it contains:
- $y^2=2 x^7+6 x^6+8 x^5+2 x^4+4 x^3+5 x+8$
- $y^2=2 x^8+5 x^7+5 x^6+2 x^5+11 x^4+8 x^3+x^2+11 x+7$
- $y^2=2 x^7+10 x^6+2 x^5+5 x^4+9 x^3+4 x^2+10 x+4$
- $y^2=x^7+12 x^5+6 x^4+3 x^2+7 x+11$
- $y^2=2 x^8+6 x^7+2 x^6+5 x^5+5 x^4+12 x^3+12 x^2+8 x+12$
- $y^2=2 x^7+10 x^6+2 x^5+8 x^4+x^3+8 x^2+5 x+10$
- $y^2=2 x^8+8 x^7+5 x^6+10 x^5+5 x^4+12 x^3+8 x^2+6 x+4$
- $y^2=2 x^7+5 x^6+2 x^5+7 x^4+8 x^3+9 x^2+8$
- $y^2=x^8+3 x^6+x^5+6 x^4+x^3+8 x^2+4 x$
- $y^2=2 x^8+x^7+7 x^6+7 x^5+7 x^4+10 x^3+x^2+11 x+2$
- $y^2=x^8+6 x^7+12 x^6+8 x^5+7 x^4+10 x^2+8 x+7$
- $y^2=2 x^8+8 x^7+x^6+5 x^5+10 x^4+x^2+4 x+8$
- $y^2=2 x^8+4 x^7+2 x^6+9 x^5+9 x^4+x^2+2 x+2$
- $y^2=x^8+10 x^7+10 x^5+7 x^4+6 x^3+11 x^2+11 x+9$
- $y^2=x^8+11 x^7+4 x^6+4 x^5+9 x^4+9 x^3+10 x^2+x+8$
- $y^2=x^8+7 x^7+3 x^5+9 x^4+4 x^2+6 x+4$
- $y^2=2 x^8+2 x^7+7 x^6+3 x^5+12 x^4+9 x^3+6 x^2+4 x+9$
- $y^2=2 x^8+10 x^7+10 x^6+7 x^4+4 x^3+10 x^2+12 x+3$
- $y^2=x^8+x^7+5 x^6+11 x^5+6 x^4+x^3+x^2+x+5$
- $y^2=x^8+x^6+3 x^5+11 x^4+3 x^3+7 x^2+12 x+2$
- and 118 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{13}$.
Endomorphism algebra over $\F_{13}$| The endomorphism algebra of this simple isogeny class is 6.0.25951344.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 3.13.c_t_ci | $2$ | (not in LMFDB) |