Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 + 4 x + 97 x^{2} )( 1 + 10 x + 97 x^{2} )$ |
$1 + 14 x + 234 x^{2} + 1358 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.565091650464$, $\pm0.669494215923$ |
Angle rank: | $2$ (numerical) |
Jacobians: | $132$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $11016$ | $91124352$ | $830228782536$ | $7837178324557824$ | $73744504716492232776$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $112$ | $9682$ | $909664$ | $88526398$ | $8587583872$ | $832970797522$ | $80798276613712$ | $7837433683319806$ | $760231058597131408$ | $73742412691524633682$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 132 curves (of which all are hyperelliptic):
- $y^2=45 x^6+55 x^5+56 x^4+64 x^3+56 x^2+55 x+45$
- $y^2=22 x^6+88 x^5+66 x^4+35 x^3+40 x^2+71 x+48$
- $y^2=68 x^6+61 x^5+24 x^4+57 x^3+24 x^2+61 x+68$
- $y^2=82 x^6+93 x^5+4 x^4+90 x^3+7 x^2+96 x+66$
- $y^2=36 x^6+11 x^5+23 x^4+21 x^3+62 x^2+38 x+4$
- $y^2=45 x^6+11 x^5+49 x^4+2 x^3+49 x^2+11 x+45$
- $y^2=91 x^6+27 x^5+64 x^4+33 x^3+64 x^2+27 x+91$
- $y^2=85 x^6+49 x^5+29 x^4+30 x^3+58 x^2+2 x+1$
- $y^2=37 x^6+54 x^5+43 x^4+43 x^3+85 x^2+51 x+74$
- $y^2=30 x^6+44 x^5+2 x^4+62 x^3+14 x$
- $y^2=89 x^6+90 x^5+29 x^4+63 x^3+20 x^2+39 x+79$
- $y^2=18 x^6+55 x^5+80 x^4+92 x^3+49 x^2+66 x+44$
- $y^2=18 x^6+62 x^5+26 x^4+46 x^3+26 x^2+62 x+18$
- $y^2=x^6+44 x^5+68 x^4+12 x^3+52 x^2+10 x+67$
- $y^2=93 x^6+43 x^5+25 x^4+50 x^3+70 x^2+86 x+35$
- $y^2=61 x^6+86 x^5+67 x^4+21 x^3+88 x^2+68 x+28$
- $y^2=91 x^6+16 x^5+82 x^4+73 x^3+78 x^2+40 x+25$
- $y^2=53 x^6+78 x^5+47 x^4+24 x^3+47 x^2+78 x+53$
- $y^2=53 x^6+x^5+46 x^4+85 x^3+56 x^2+9 x+24$
- $y^2=16 x^6+5 x^5+86 x^4+81 x^3+47 x^2+52 x+95$
- and 112 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.e $\times$ 1.97.k and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.97.ao_ja | $2$ | (not in LMFDB) |
2.97.ag_fy | $2$ | (not in LMFDB) |
2.97.g_fy | $2$ | (not in LMFDB) |