Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 2 x + 2 x^{2} - 194 x^{3} + 9409 x^{4}$ |
| Frobenius angles: | $\pm0.227127002908$, $\pm0.727127002908$ |
| Angle rank: | $1$ (numerical) |
| Number field: | \(\Q(i, \sqrt{193})\) |
| Galois group: | $C_2^2$ |
| Jacobians: | $316$ |
| Cyclic group of points: | no |
| Non-cyclic primes: | $2, 3$ |
This isogeny class is simple but not geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9216$ | $88547328$ | $832444646400$ | $7840629295939584$ | $73743204085842871296$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $96$ | $9410$ | $912096$ | $88565374$ | $8587432416$ | $832972004930$ | $80798296734048$ | $7837433297177854$ | $760231057168540512$ | $73742412689492826050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 316 curves (of which all are hyperelliptic):
- $y^2=37 x^6+45 x^5+8 x^4+40 x^3+31 x^2+22 x+39$
- $y^2=5 x^6+50 x^5+57 x^4+59 x^3+91 x^2+81 x+75$
- $y^2=92 x^6+11 x^5+84 x^4+58 x^3+27 x^2+48 x+87$
- $y^2=24 x^6+89 x^5+16 x^4+15 x^3+6 x^2+59 x+30$
- $y^2=81 x^6+50 x^5+71 x^4+74 x^3+85 x^2+80 x+60$
- $y^2=8 x^6+59 x^5+25 x^4+19 x^3+38 x^2+x+39$
- $y^2=13 x^6+93 x^5+74 x^4+51 x^3+32 x^2+93 x+66$
- $y^2=81 x^6+68 x^5+54 x^4+44 x^3+8 x^2+34 x+39$
- $y^2=95 x^6+2 x^5+59 x^4+81 x^3+30 x^2+50 x+10$
- $y^2=47 x^6+76 x^5+69 x^4+61 x^3+6 x^2+35 x+88$
- $y^2=72 x^6+23 x^5+4 x^4+85 x^3+61 x^2+34 x+26$
- $y^2=10 x^6+8 x^5+90 x^4+32 x^3+93 x^2+12 x+56$
- $y^2=62 x^6+90 x^5+31 x^4+44 x^3+41 x^2+77 x+3$
- $y^2=9 x^6+30 x^5+72 x^4+11 x^3+94 x^2+82 x+40$
- $y^2=90 x^6+67 x^5+34 x^4+36 x^3+69 x^2+87 x+25$
- $y^2=89 x^6+35 x^5+59 x^4+32 x^3+79 x^2+62 x+17$
- $y^2=33 x^6+96 x^5+34 x^4+30 x^3+93 x^2+64 x+51$
- $y^2=69 x^6+48 x^5+42 x^4+15 x^3+69 x^2+23 x+30$
- $y^2=64 x^6+43 x^5+36 x^4+11 x^3+54 x^2+41 x+33$
- $y^2=64 x^6+94 x^5+85 x^4+10 x^3+14 x^2+82 x+42$
- and 296 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{4}}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is \(\Q(i, \sqrt{193})\). |
| The base change of $A$ to $\F_{97^{4}}$ is 1.88529281.basc 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-193}) \)$)$ |
- Endomorphism algebra over $\F_{97^{2}}$
The base change of $A$ to $\F_{97^{2}}$ is the simple isogeny class 2.9409.a_basc and its endomorphism algebra is \(\Q(i, \sqrt{193})\).
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.97.c_c | $2$ | (not in LMFDB) |
| 2.97.a_ahk | $8$ | (not in LMFDB) |
| 2.97.a_hk | $8$ | (not in LMFDB) |