Invariants
| Base field: | $\F_{97}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 32 x + 440 x^{2} - 3104 x^{3} + 9409 x^{4}$ |
| Frobenius angles: | $\pm0.0743875887952$, $\pm0.274040761417$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.825600.6 |
| Galois group: | $D_{4}$ |
| Jacobians: | $16$ |
| Isomorphism classes: | 32 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $6714$ | $87188004$ | $833117492826$ | $7838034507384336$ | $73742420670385691034$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $66$ | $9266$ | $912834$ | $88536070$ | $8587341186$ | $832970899442$ | $80798268258690$ | $7837433500782334$ | $760231059355917378$ | $73742412713174175986$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 16 curves (of which all are hyperelliptic):
- $y^2=4 x^6+44 x^5+26 x^4+27 x^3+95 x^2+27 x+70$
- $y^2=47 x^6+30 x^5+6 x^4+77 x^3+63 x^2+36 x+95$
- $y^2=30 x^6+36 x^5+75 x^4+37 x^3+76 x^2+16 x+22$
- $y^2=52 x^6+49 x^5+52 x^4+79 x^3+5 x^2+89 x+28$
- $y^2=60 x^6+18 x^5+24 x^4+67 x^3+53 x^2+21 x+61$
- $y^2=7 x^6+62 x^5+57 x^4+96 x^3+93 x^2+x+61$
- $y^2=94 x^6+x^5+51 x^4+5 x^3+4 x^2+16 x+90$
- $y^2=27 x^6+18 x^5+56 x^4+31 x^3+4 x^2+26 x+56$
- $y^2=19 x^6+87 x^5+77 x^4+29 x^3+64 x^2+59 x+2$
- $y^2=17 x^6+26 x^5+8 x^4+46 x^3+72 x^2+37 x+26$
- $y^2=49 x^6+61 x^5+95 x^4+38 x^3+31 x^2+49 x+56$
- $y^2=32 x^6+15 x^5+4 x^4+19 x^3+90 x^2+54 x+1$
- $y^2=74 x^6+80 x^5+40 x^4+19 x^3+51 x^2+32 x+32$
- $y^2=29 x^6+85 x^5+19 x^4+70 x^3+33 x^2+67 x+14$
- $y^2=5 x^6+40 x^5+43 x^4+80 x^3+61 x^2+57 x+42$
- $y^2=46 x^6+37 x^5+94 x^4+29 x^3+42 x^2+67 x+63$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97}$.
Endomorphism algebra over $\F_{97}$| The endomorphism algebra of this simple isogeny class is 4.0.825600.6. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.97.bg_qy | $2$ | (not in LMFDB) |