Invariants
Base field: | $\F_{97}$ |
Dimension: | $2$ |
L-polynomial: | $( 1 - 18 x + 97 x^{2} )( 1 - 8 x + 97 x^{2} )$ |
$1 - 26 x + 338 x^{2} - 2522 x^{3} + 9409 x^{4}$ | |
Frobenius angles: | $\pm0.133124938748$, $\pm0.366875061252$ |
Angle rank: | $1$ (numerical) |
Jacobians: | $162$ |
This isogeny class is not simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $7200$ | $88531200$ | $834088039200$ | $7837773373440000$ | $73741823033544180000$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $72$ | $9410$ | $913896$ | $88533118$ | $8587271592$ | $832972004930$ | $80798305863816$ | $7837433941136638$ | $760231061088027912$ | $73742412689492826050$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 162 curves (of which all are hyperelliptic):
- $y^2=80 x^6+3 x^5+10 x^4+6 x^3+16 x^2+69 x+13$
- $y^2=56 x^6+83 x^5+91 x^4+74 x^3+14 x^2+22 x+10$
- $y^2=94 x^5+44 x^4+37 x^3+78 x^2+82 x+72$
- $y^2=80 x^6+72 x^5+54 x^4+46 x^3+54 x^2+72 x+80$
- $y^2=11 x^6+76 x^5+8 x^4+24 x^3+89 x^2+37 x+87$
- $y^2=88 x^6+83 x^5+38 x^4+80 x^3+7 x^2+43 x+64$
- $y^2=14 x^6+8 x^5+59 x^4+62 x^3+70 x^2+47 x+84$
- $y^2=8 x^6+78 x^5+11 x^4+79 x^3+82 x^2+90 x+23$
- $y^2=73 x^6+38 x^5+69 x^4+91 x^3+61 x^2+78 x+60$
- $y^2=83 x^6+95 x^5+8 x^4+45 x^3+8 x^2+95 x+83$
- $y^2=74 x^6+48 x^5+31 x^4+90 x^3+30 x^2+44 x+76$
- $y^2=43 x^6+11 x^5+83 x^4+29 x^3+78 x^2+94 x+54$
- $y^2=29 x^6+85 x^5+86 x^4+19 x^3+34 x^2+7 x+38$
- $y^2=12 x^6+9 x^5+20 x^4+70 x^3+82 x^2+62 x+13$
- $y^2=93 x^6+70 x^5+49 x^4+5 x^3+70 x^2+28 x+31$
- $y^2=63 x^6+22 x^5+22 x^4+65 x^3+82 x^2+94 x+91$
- $y^2=82 x^6+27 x^5+17 x^4+85 x^3+31 x^2+45 x+87$
- $y^2=91 x^6+31 x^5+28 x^4+71 x^3+82 x^2+65 x+45$
- $y^2=24 x^6+23 x^5+20 x^4+8 x^3+87 x^2+39 x+64$
- $y^2=81 x^6+7 x^5+27 x^4+77 x^3+26 x^2+23 x+28$
- and 142 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{97^{4}}$.
Endomorphism algebra over $\F_{97}$The isogeny class factors as 1.97.as $\times$ 1.97.ai and its endomorphism algebra is a direct product of the endomorphism algebras for each isotypic factor. The endomorphism algebra for each factor is: |
The base change of $A$ to $\F_{97^{4}}$ is 1.88529281.cvu 2 and its endomorphism algebra is $\mathrm{M}_{2}($\(\Q(\sqrt{-1}) \)$)$ |
- Endomorphism algebra over $\F_{97^{2}}$
The base change of $A$ to $\F_{97^{2}}$ is 1.9409.afa $\times$ 1.9409.fa. The endomorphism algebra for each factor is:
Base change
This is a primitive isogeny class.