Invariants
Base field: | $\F_{3^{2}}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 6 x + 19 x^{2} - 54 x^{3} + 81 x^{4}$ |
Frobenius angles: | $\pm0.0763052093420$, $\pm0.490896535327$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.4672.2 |
Galois group: | $D_{4}$ |
Jacobians: | $3$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $41$ | $6601$ | $506432$ | $41408073$ | $3472388441$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $4$ | $84$ | $694$ | $6308$ | $58804$ | $532686$ | $4784308$ | $43038404$ | $387432262$ | $3486984564$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 3 curves (of which all are hyperelliptic):
- $y^2=2 a x^6+a x^5+2 a x^3+2 a x^2+a x+2 a$
- $y^2=(2 a+1) x^6+a x^5+(2 a+2) x^4+(2 a+1) x^3+2 a x+2 a+1$
- $y^2=(2 a+1) x^6+2 a x^5+(2 a+1) x^4+2 x^3+(2 a+1) x^2+(2 a+2) x+a$
where $a$ is a root of the Conway polynomial.
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{3^{2}}$.
Endomorphism algebra over $\F_{3^{2}}$The endomorphism algebra of this simple isogeny class is 4.0.4672.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.9.g_t | $2$ | 2.81.c_aev |