Invariants
| Base field: | $\F_{89}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 + 12 x + 174 x^{2} + 1068 x^{3} + 7921 x^{4}$ |
| Frobenius angles: | $\pm0.494524355043$, $\pm0.726573969048$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.29056000.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $168$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $9176$ | $64378816$ | $496043557976$ | $3936548285578240$ | $31181309915594900696$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $102$ | $8126$ | $703638$ | $62741598$ | $5583986022$ | $496982090846$ | $44231349311958$ | $3936588577047358$ | $350356403670230502$ | $31181719948466535806$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 168 curves (of which all are hyperelliptic):
- $y^2=84 x^6+68 x^5+80 x^4+36 x^3+55 x^2+6 x+73$
- $y^2=70 x^6+70 x^5+55 x^4+46 x^3+62 x^2+13 x+61$
- $y^2=64 x^6+87 x^5+37 x^4+19 x^3+30 x^2+39$
- $y^2=60 x^6+14 x^5+54 x^4+84 x^3+68 x^2+9 x+9$
- $y^2=17 x^6+33 x^5+44 x^4+69 x^3+66 x^2+78 x+85$
- $y^2=49 x^6+16 x^5+14 x^4+16 x^3+19 x^2+75 x+77$
- $y^2=47 x^6+13 x^5+56 x^4+46 x^3+85 x^2+42 x+20$
- $y^2=39 x^6+22 x^5+77 x^4+5 x^3+60 x^2+3 x$
- $y^2=3 x^6+x^5+32 x^4+51 x^3+52 x^2+31$
- $y^2=60 x^5+62 x^4+81 x^3+3 x^2+9 x+51$
- $y^2=10 x^6+84 x^5+73 x^4+29 x^3+44 x^2+13 x+4$
- $y^2=41 x^6+59 x^5+13 x^4+73 x^3+33 x^2+57 x+66$
- $y^2=45 x^6+38 x^5+81 x^4+86 x^3+80 x^2+25 x+21$
- $y^2=55 x^6+22 x^5+67 x^4+34 x^3+10 x^2+74 x+53$
- $y^2=19 x^6+29 x^5+77 x^4+22 x^3+18 x^2+x+8$
- $y^2=50 x^6+36 x^5+43 x^4+45 x^3+57 x^2+38 x+44$
- $y^2=19 x^6+23 x^5+79 x^4+43 x^3+41 x^2+54 x+79$
- $y^2=6 x^6+35 x^5+68 x^4+32 x^2+10 x+1$
- $y^2=66 x^6+65 x^5+50 x^4+59 x^3+68 x^2+82 x+33$
- $y^2=66 x^6+75 x^5+27 x^4+36 x^3+64 x^2+x+53$
- and 148 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{89}$.
Endomorphism algebra over $\F_{89}$| The endomorphism algebra of this simple isogeny class is 4.0.29056000.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.89.am_gs | $2$ | (not in LMFDB) |