Invariants
This isogeny class is simple and geometrically simple,
primitive,
ordinary,
and not supersingular.
It is principally polarizable and
contains a Jacobian.
This isogeny class is ordinary.
Point counts
Point counts of the abelian variety
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
| $A(\F_{q^r})$ |
$7146$ |
$46263204$ |
$328097506554$ |
$2252485267742736$ |
$15516735276836776266$ |
Point counts of the curve
| $r$ |
$1$ |
$2$ |
$3$ |
$4$ |
$5$ |
$6$ |
$7$ |
$8$ |
$9$ |
$10$ |
| $C(\F_{q^r})$ |
$88$ |
$6714$ |
$573808$ |
$47462390$ |
$3939216848$ |
$326940535818$ |
$27136049169800$ |
$2252292165890014$ |
$186940254119148184$ |
$15516041185984578714$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 96 curves (of which all are hyperelliptic):
- $y^2=33 x^6+80 x^5+31 x^4+56 x^3+56 x^2+37 x+44$
- $y^2=73 x^6+54 x^5+23 x^4+32 x^3+2 x^2+51 x+52$
- $y^2=10 x^6+44 x^5+10 x^4+73 x^3+9 x^2+26 x+41$
- $y^2=46 x^6+10 x^5+61 x^4+39 x^3+30 x^2+36 x+28$
- $y^2=13 x^6+57 x^5+78 x^4+81 x^3+8 x^2+32 x+64$
- $y^2=73 x^6+67 x^5+36 x^4+76 x^3+3 x^2+24 x+64$
- $y^2=42 x^6+63 x^5+29 x^4+77 x^3+55 x^2+67 x+68$
- $y^2=76 x^6+14 x^5+37 x^4+5 x^3+54 x^2+66 x+74$
- $y^2=33 x^6+28 x^5+13 x^4+29 x^3+16 x^2+9 x+56$
- $y^2=4 x^6+29 x^5+5 x^4+49 x^3+55 x^2+68 x+7$
- $y^2=69 x^6+78 x^5+44 x^4+19 x^3+33 x^2+17 x+32$
- $y^2=46 x^6+30 x^5+42 x^4+22 x^3+27 x^2+57 x+1$
- $y^2=22 x^6+2 x^5+74 x^4+49 x^3+3 x^2+68 x+28$
- $y^2=13 x^6+7 x^5+17 x^4+21 x^3+9 x^2+63 x+8$
- $y^2=45 x^6+26 x^5+33 x^4+16 x^3+20 x^2+18 x+44$
- $y^2=20 x^6+77 x^5+30 x^4+59 x^3+63 x^2+71 x+10$
- $y^2=73 x^6+17 x^5+31 x^4+6 x^3+44 x^2+69 x+15$
- $y^2=6 x^6+8 x^5+76 x^4+21 x^3+19 x^2+31 x+17$
- $y^2=63 x^6+34 x^5+81 x^4+62 x^2+20 x+24$
- $y^2=39 x^6+31 x^5+76 x^4+24 x^3+47 x^2+58 x+3$
- and 76 more
- $y^2=56 x^6+40 x^5+6 x^4+17 x^3+67 x^2+75 x+22$
- $y^2=51 x^6+30 x^5+35 x^4+61 x^3+24 x^2+76 x+37$
- $y^2=38 x^6+24 x^5+16 x^4+22 x^3+22 x^2+53 x+29$
- $y^2=15 x^6+21 x^5+81 x^4+73 x^3+25 x^2+2 x+23$
- $y^2=16 x^6+81 x^5+58 x^4+52 x^3+73 x^2+59 x+47$
- $y^2=3 x^6+53 x^5+24 x^4+8 x^3+62 x^2+71 x+15$
- $y^2=38 x^6+57 x^5+x^4+79 x^3+50 x^2+64 x+15$
- $y^2=30 x^6+75 x^5+42 x^4+32 x^3+18 x^2+72 x+14$
- $y^2=80 x^6+25 x^5+48 x^4+73 x^3+58 x^2+82 x+60$
- $y^2=20 x^6+30 x^5+51 x^4+28 x^3+77 x^2+37 x+10$
- $y^2=63 x^6+58 x^5+45 x^4+72 x^3+43 x^2+76 x+58$
- $y^2=63 x^6+3 x^5+81 x^4+52 x^3+41 x^2+17 x+30$
- $y^2=18 x^6+73 x^5+21 x^4+49 x^3+22 x^2+66 x+54$
- $y^2=63 x^6+24 x^5+32 x^4+25 x^3+44 x^2+33 x+75$
- $y^2=32 x^6+20 x^5+62 x^4+78 x^3+50 x^2+15 x+81$
- $y^2=69 x^6+26 x^5+69 x^4+4 x^3+18 x^2+24 x+7$
- $y^2=67 x^6+32 x^5+46 x^4+62 x^3+4 x^2+55 x+22$
- $y^2=66 x^6+8 x^5+69 x^4+66 x^3+79 x+57$
- $y^2=65 x^6+82 x^5+79 x^4+54 x^3+70 x^2+27 x+39$
- $y^2=23 x^6+25 x^5+79 x^4+14 x^3+4 x^2+42 x+42$
- $y^2=56 x^6+79 x^5+4 x^4+14 x^3+39 x^2+79 x+3$
- $y^2=13 x^6+74 x^5+48 x^4+52 x^3+21 x^2+78 x+27$
- $y^2=38 x^6+72 x^5+15 x^4+44 x^3+31 x^2+35 x+82$
- $y^2=15 x^6+66 x^5+44 x^4+51 x^3+40 x^2+60 x+24$
- $y^2=75 x^6+33 x^5+67 x^4+12 x^3+50 x+9$
- $y^2=63 x^6+71 x^5+12 x^4+4 x^3+3 x^2+68 x+10$
- $y^2=41 x^6+55 x^5+18 x^4+7 x^3+75 x^2+29 x+41$
- $y^2=40 x^6+6 x^5+16 x^4+62 x^3+51 x^2+50 x+16$
- $y^2=24 x^6+70 x^5+65 x^4+22 x^3+72 x^2+39 x+48$
- $y^2=35 x^6+59 x^5+22 x^4+75 x^3+34 x^2+77 x+21$
- $y^2=41 x^6+46 x^5+4 x^4+12 x^3+71 x^2+20 x+70$
- $y^2=44 x^6+69 x^5+67 x^4+79 x^3+70 x^2+58 x+10$
- $y^2=35 x^6+67 x^5+41 x^4+81 x^3+50 x^2+16 x+30$
- $y^2=71 x^6+82 x^5+70 x^4+65 x^3+55 x^2+50 x+71$
- $y^2=48 x^6+20 x^5+9 x^4+32 x^3+35 x^2+52 x+59$
- $y^2=3 x^6+13 x^5+58 x^4+58 x^3+9 x^2+33 x+33$
- $y^2=49 x^6+20 x^5+49 x^4+45 x^3+73 x^2+14 x+37$
- $y^2=60 x^6+47 x^5+14 x^4+64 x^3+63 x^2+17 x+49$
- $y^2=42 x^6+17 x^5+36 x^4+37 x^3+x^2+79 x+9$
- $y^2=36 x^6+53 x^5+37 x^4+76 x^3+66 x^2+11 x+30$
- $y^2=52 x^6+29 x^5+81 x^4+66 x^3+63 x^2+58 x+17$
- $y^2=20 x^6+59 x^5+13 x^4+6 x^3+12 x^2+78 x+52$
- $y^2=57 x^6+55 x^5+40 x^4+15 x^3+26 x^2+63 x+32$
- $y^2=58 x^6+28 x^5+28 x^4+24 x^3+42 x^2+38 x+41$
- $y^2=42 x^6+54 x^5+50 x^4+9 x^3+35 x^2+57 x+13$
- $y^2=79 x^6+43 x^5+36 x^4+29 x^3+32 x^2+66 x+82$
- $y^2=26 x^6+21 x^5+35 x^4+74 x^3+52 x^2+36 x+73$
- $y^2=18 x^6+30 x^5+45 x^4+14 x^3+11 x^2+17 x+2$
- $y^2=37 x^6+36 x^5+26 x^4+65 x^3+50 x+77$
- $y^2=73 x^6+27 x^5+76 x^4+69 x^3+49 x^2+82 x+71$
- $y^2=58 x^6+80 x^5+16 x^4+68 x^3+47 x^2+66 x+33$
- $y^2=77 x^6+44 x^5+36 x^4+33 x^3+38 x^2+66 x+82$
- $y^2=37 x^6+15 x^5+43 x^4+21 x^3+7 x^2+15 x+50$
- $y^2=3 x^6+23 x^5+5 x^4+56 x^3+18 x^2+35 x+53$
- $y^2=10 x^6+35 x^5+66 x^4+44 x^3+57 x^2+56 x+49$
- $y^2=61 x^6+74 x^5+54 x^3+79 x^2+28 x+76$
- $y^2=56 x^6+3 x^5+52 x^4+50 x^3+62 x^2+36 x+48$
- $y^2=67 x^6+43 x^5+65 x^4+22 x^3+75 x^2+28 x+63$
- $y^2=46 x^6+34 x^5+9 x^4+30 x^3+71 x^2+82 x+35$
- $y^2=39 x^6+27 x^5+10 x^4+22 x^3+18 x^2+44 x+17$
- $y^2=74 x^6+34 x^5+41 x^4+46 x^3+80 x^2+64 x+68$
- $y^2=44 x^6+58 x^5+5 x^4+x^3+67 x^2+18 x+62$
- $y^2=3 x^5+50 x^4+60 x^3+71 x^2+37 x+26$
- $y^2=53 x^6+34 x^5+69 x^4+23 x^3+2 x^2+65 x+9$
- $y^2=2 x^6+77 x^5+76 x^4+50 x^3+49 x^2+30 x+68$
- $y^2=50 x^6+45 x^5+71 x^4+63 x^3+75 x^2+40 x+5$
- $y^2=73 x^6+80 x^5+7 x^4+66 x^2+35 x+58$
- $y^2=9 x^6+23 x^5+36 x^4+64 x^3+29 x^2+41 x+71$
- $y^2=55 x^6+54 x^5+11 x^4+16 x^3+48 x^2+55 x+68$
- $y^2=51 x^6+9 x^5+21 x^4+4 x^3+59 x^2+81 x+17$
- $y^2=76 x^6+58 x^5+70 x^4+60 x^3+13 x^2+67 x+51$
- $y^2=7 x^6+16 x^5+46 x^4+8 x^3+77 x^2+80 x+11$
- $y^2=79 x^6+5 x^5+78 x^4+59 x^3+76 x^2+21 x+25$
- $y^2=8 x^6+49 x^5+65 x^4+80 x^3+55 x^2+39 x+29$
- $y^2=80 x^6+50 x^5+13 x^4+14 x^3+78 x^2+66 x+29$
- $y^2=29 x^6+34 x^5+22 x^4+2 x^3+22 x^2+47 x+22$
All geometric endomorphisms are defined over $\F_{83}$.
Endomorphism algebra over $\F_{83}$
| The endomorphism algebra of this simple isogeny class is 4.0.3334400.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
| 2.83.ae_adc | $2$ | (not in LMFDB) |